Skip to main content
Log in

Effects of Distal Mutations on Prolyl-Adenylate Formation of Escherichia coli Prolyl-tRNA Synthetase

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Enzymes play important roles in many biological processes. Amino acid residues in the active site pocket of an enzyme, which are in direct contact with the substrate(s), are generally believed to be critical for substrate recognition and catalysis. Identifying and understanding how these “catalytic” residues help enzymes achieve enormous rate enhancement has been the focus of many structural and biochemical studies over the past several decades. Recent studies have shown that enzymes are intrinsically dynamic and dynamic coupling between distant structural elements is essential for effective catalysis in modular enzymes. Therefore, distal residues are expected to have impact on enzyme function. However, few studies have investigated the role of distal residues on enzymatic catalysis. In the present study, the effects of distal residue mutations on the catalytic function of an aminoacyl-tRNA synthetase, namely, prolyl-tRNA synthase, were investigated. The present study demonstrates that distal residues significantly contribute to catalysis of the modular Escherichia coli prolyl-tRNA synthetase by maintaining intrinsic protein flexibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study within the article [and/or] its supplementary materials will be made available upon request.

Code Availability

An online software was used for the present study.

Abbreviations

ARS:

Aminoacyl-tRNA synthetase

Ec:

Escherichia coli

INS:

Insertion domain

PBL:

Proline-binding loop

Pro-AMP:

Prolyl-adenylate

ProRS:

Prolyl-tRNA synthetase

WT:

Wild-type

References

  1. Ibba M, Soll D (2000) Aminoacyl-tRNA synthesis. Annu Rev Biochem 69:617–650

    Article  CAS  Google Scholar 

  2. Ibba M, Francklyn C, Cusack S (2005) The aminoacyl-tRNA synthetases, Georgetown, TX, USA: Landes Bioscience: Eurekah.com, ©2005

  3. Brodkin HR, DeLateur NA, Somarowthu S, Mills CL, Novak WR, Beuning PJ, Ringe D, Ondrechen MJ (2015) Prediction of distal residue participation in enzyme catalysis. Protein Sci 24:762–778

    Article  CAS  Google Scholar 

  4. Weimer KM, Shane BL, Brunetto M, Bhattacharyya S, Hati S (2009) Evolutionary basis for the coupled-domain motions in Thermus thermophilus leucyl-tRNA synthetase. J Biol Chem 284:10088–10099

    Article  CAS  Google Scholar 

  5. Sanford B, Cao B, Johnson JM, Zimmerman K, Strom AM, Mueller RM, Bhattacharyya S, Musier-Forsyth K, Hati S (2012) Role of coupled dynamics in the catalytic activity of prokaryotic-like prolyl-tRNA Synthetases. Biochemistry 51:2146–2156

    Article  CAS  Google Scholar 

  6. Johnson JM, Sanford BL, Strom AM, Tadayon SN, Lehman BP, Zirbes AM, Bhattacharyya S, Musier-Forsyth K, Hati S (2013) Multiple pathways promote dynamical coupling between catalytic domains in Escherichia coli prolyl-tRNA synthetase. Biochemistry 52:4399–4412

    Article  CAS  Google Scholar 

  7. Kennedy EJ, Yang J, Pillus L, Taylor SS, Ghosh G (2009) Identifying critical non-catalytic residues that modulate protein kinase A activity. PLoS ONE 4:e4746

    Article  Google Scholar 

  8. Ahel I, Stathopoulos C, Ambrogelly A, Sauerwald A, Toogood H, Hartsch T, Soll D (2002) Cysteine activation is an inherent in vitro property of prolyl-tRNA synthetases. J Biol Chem 277:34743–34748

    Article  CAS  Google Scholar 

  9. Beuning PJ, Musier-Forsyth K (2000) Hydrolytic editing by a class II aminoacyl-tRNA synthetase. Proc Natl Acad Sci USA 97:8916–8920

    Article  CAS  Google Scholar 

  10. Beuning PJ, Musier-Forsyth K (2001) Species-specific differences in amino acid editing by class II prolyl-tRNA synthetase. J Biol Chem 276:30779–30785

    Article  CAS  Google Scholar 

  11. Mascarenhas A, Martinis SA, An S, Rosen AE, Musier-Forsyth K (2009) Fidelity mechanisms of the aminoacyl-tRNA synthetases. In: RajBhandary UL, Köhrer C (eds) Protein engineering. Springer Verlag, New York, pp 153–200

    Google Scholar 

  12. Cusack S, Yaremchuk A, Krikliviy I, Tukalo M (1998) tRNA(Pro) anticodon recognition by Thermus thermophilus prolyl-tRNA synthetase. Structure 6:101–108

    Article  CAS  Google Scholar 

  13. Stehlin C, Burke B, Yang F, Liu H, Shiba K, Musier-Forsyth K (1998) Species-specific differences in the operational RNA code for aminoacylation of tRNAPro. Biochemistry 37:8605–8613

    Article  CAS  Google Scholar 

  14. Wong FC, Beuning PJ, Nagan M, Shiba K, Musier-Forsyth K (2002) Functional role of the prokaryotic proline-tRNA synthetase insertion domain in amino acid editing. Biochemistry 41:7108–7115

    Article  CAS  Google Scholar 

  15. Wong FC, Beuning PJ, Silvers C, Musier-Forsyth K (2003) An isolated class II aminoacyl-tRNA synthetase insertion domain is functional in amino acid editing. J Biol Chem 278:52857–52864

    Article  CAS  Google Scholar 

  16. An S, Musier-Forsyth K (2004) Trans-editing of Cys-tRNAPro by Haemophilus influenzae YbaK protein. J Biol Chem 279:42359–42362

    Article  CAS  Google Scholar 

  17. An S, Musier-Forsyth K (2005) Cys-tRNA(Pro) editing by Haemophilus influenzae YbaK via a novel synthetase.YbaK.tRNA ternary complex. J Biol Chem 280:34465–34472

    Article  CAS  Google Scholar 

  18. Novoa EM, Vargas-Rodriguez O, Lange S, Goto Y, Suga H, Musier-Forsyth K, Ribas de Pouplana L (2015) Ancestral AlaX editing enzymes for control of genetic code fidelity are not tRNA-specific. J Biol Chem 290:10495–10503

    Article  CAS  Google Scholar 

  19. Hati S, Ziervogel B, Sternjohn J, Wong FC, Nagan MC, Rosen AE, Siliciano PG, Chihade JW, Musier-Forsyth K (2006) Pre-transfer editing by class II prolyl-tRNA synthetase: role of aminoacylation active site in "selective release" of noncognate amino acids. J Biol Chem 281:27862–27872

    Article  CAS  Google Scholar 

  20. Warren N, Strom A, Nicolet B, Albin K, Albrecht J, Bausch B, Dobbe M, Dudek M, Firgens S, Fritsche C, Gunderson A, Heimann J, Her C, Hurt J, Konorev D, Lively M, Meacham S, Rodriguez V, Tadayon S, Trcka D, Yang Y, Bhattacharyya S, Hati S (2014) Comparison of the intrinsic dynamics of aminoacyl-tRNA synthetases. Protein J 33:184–198

    Article  CAS  Google Scholar 

  21. Cusack S, Yaremchuk A, Tukalo M (2000) The 2 A crystal structure of leucyl-tRNA synthetase and its complex with a leucyl-adenylate analogue. EMBO J 19:2351–2361

    Article  CAS  Google Scholar 

  22. Burke B, Lipman RS, Shiba K, Musier-Forsyth K, Hou YM (2001) Divergent adaptation of tRNA recognition by Methanococcus jannaschii prolyl-tRNA synthetase. J Biol Chem 276:20286–20291

    Article  CAS  Google Scholar 

  23. Stehlin C, Heacock DH 2nd, Liu H, Musier-Forsyth K (1997) Chemical modification and site-directed mutagenesis of the single cysteine in motif 3 of class II Escherichia coli prolyl-tRNA synthetase. Biochemistry 36:2932–2938

    Article  CAS  Google Scholar 

  24. Fersht AR (1975) Demonstration of two active sites on a monomeric aminoacyl-tRNA synthetase. Possible roles of negative cooperativity and half-of-the-sites reactivity in oligomeric enzymes. Biochemistry 14:5–12

    Article  CAS  Google Scholar 

  25. Liu H, Musier-Forsyth K (1994) Escherichia coli proline tRNA synthetase is sensitive to changes in the core region of tRNA(Pro). Biochemistry 33:12708–12714

    Article  CAS  Google Scholar 

  26. Heacock D, Forsyth CJ, Shiba K, Musier-Forsyth K (1996) Synthesis and aminoacyl-tRNA synthetase inhibitory activity of prolyl adenylate analogs. Bioorg Chem 24:273–289

    Article  CAS  Google Scholar 

  27. Cestari I, Stuart K (2013) A spectrophotometric assay for quantitative measurement of aminoacyl-tRNA synthetase activity. J Biomol Screen 18:490–497

    Article  Google Scholar 

  28. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  29. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296–w303

    Article  CAS  Google Scholar 

  30. Benkert P, Biasini M, Schwede T (2011) Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27:343–350

    Article  CAS  Google Scholar 

  31. Rodrigues CH, Pires DE, Ascher DB (2018) DynaMut: predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Res 46:W350–w355

    Article  CAS  Google Scholar 

  32. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  33. Hasegawa H, Holm L (2009) Advances and pitfalls of protein structural alignment. Curr Opin Struct Biol 19:341–348

    Article  CAS  Google Scholar 

  34. Agarwal PK (2019) A biophysical perspective on enzyme catalysis. Biochemistry 58:438–449

    Article  CAS  Google Scholar 

  35. Strom AM, Fehling SC, Bhattacharyya S, Hati S (2014) Probing the global and local dynamics of aminoacyl-tRNA synthetases using all-atom and coarse-grained simulations. J Mol Model 20:2245

    Article  Google Scholar 

  36. Emekli U, Schneidman-Duhovny D, Wolfson HJ, Nussinov R, Haliloglu T (2008) HingeProt: automated prediction of hinges in protein structures. Proteins 70:1219–1227

    Article  CAS  Google Scholar 

  37. Walsh JM, Parasuram R, Rajput PR, Rozners E, Ondrechen MJ, Beuning PJ (2012) Effects of non-catalytic, distal amino acid residues on activity of E. coli DinB (DNA polymerase IV). Environ Mol Mutagen 53:766–776

    Article  CAS  Google Scholar 

  38. Richard JP (2019) Protein flexibility and stiffness enable efficient enzymatic catalysis. J Am Chem Soc 141:3320–3331

    Article  CAS  Google Scholar 

  39. Zhang CM, Hou YM (2005) Domain-domain communication for tRNA aminoacylation: the importance of covalent connectivity. Biochemistry 44:7240–7249

    Article  CAS  Google Scholar 

  40. Mendonca LM, Marana SR (2011) Single mutations outside the active site affect the substrate specificity in a beta-glycosidase. Biochim Biophys Acta 1814:1616–1623

    Article  CAS  Google Scholar 

  41. Tyukhtenko S, Rajarshi G, Karageorgos I, Zvonok N, Gallagher ES, Huang H, Vemuri K, Hudgens JW, Ma X, Nasr ML, Pavlopoulos S, Makriyannis A (2018) Effects of distal mutations on the structure, dynamics and catalysis of human monoacylglycerol lipase. Sci Rep 8:1719

    Article  Google Scholar 

Download references

Funding

This work was supported in part by National Institute of Health [Grant Number: GM117510-01 (S.H.)] and by the Office of Research and Sponsored Programs of the University of Wisconsin-Eau Claire, Eau Claire, WI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanchita Hati.

Ethics declarations

Conflicts of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 223 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zajac, J., Anderson, H., Adams, L. et al. Effects of Distal Mutations on Prolyl-Adenylate Formation of Escherichia coli Prolyl-tRNA Synthetase. Protein J 39, 542–553 (2020). https://doi.org/10.1007/s10930-020-09910-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-020-09910-3

Keywords

Navigation