Skip to main content
Log in

Optimizing thermoelectric properties of BiSe through Cu additive enhanced effective mass and phonon scattering

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Known as a weak topological insulator (TI), BiSe structurally exhibits alternating stacks of quantum spin Hall bilayer (“Bi2”) and three-dimensional TI layer (“Bi2Se3”). The low lattice thermal conductivity of BiSe due to the presence of Bi2 bilayers promises potentially good thermoelectric performance. Herein, the thermoelectric properties of nominal Bi1−xCuxSe samples were studied as the functions of the content of Cu additive and temperature. It is found that Cu additives in BiSe (1) profoundly affect the texture of densified polycrystalline samples by inclining the crystallographic c-axis parallel toward the pressure direction in the densification process, (2) increase considerably the effective mass and thus the Seebeck coefficient, and (3) yield point defects and Cu–Se secondary phases that effectively scatter heat-carrying phonons. As a result, the optimized electrical and thermal properties yield a thermoelectric figure of merit of zT ~ 0.29 in Bi1−xCuxSe (x = 0.03) sample at 467 K in parallel to the pressure direction and a zT ~ 0.20 at 468 K in the perpendicular direction.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhou XY, Yan YC, Lu X, Zhu HT, Han XD, Chen G, Ren ZF. Routes for high-performance thermoelectric materials. Mater Today. 2018;21(9):974.

    Article  CAS  Google Scholar 

  2. Tan GJ, Zhao LD, Kanatzidis MG. Rationally designing high-performance bulk thermoelectric materials. Chem Rev. 2016;116(19):12123.

    Article  CAS  Google Scholar 

  3. Yao ZC, Li W, Tang J, Chen ZW, Lin SQ, Biswas K, Burkov A, Pei YZ. Solute manipulation enabled band and defect engineering for theroelectric enhancedments of SnTe. InfoMat. 2019;1(4):571.

    Article  CAS  Google Scholar 

  4. Zhang SS, Yang DF, Shaheen N, Shen XC, Xie DD, Yan YC, Lu X, Zhou XY. Enhanced thermoelectric performance of CoSbS0.85Se0.15 by point defect. Rare Met. 2018;37(4):326.

    Article  CAS  Google Scholar 

  5. Wang H, Pei YZ, LaLonde AD, Snyder GJ. Thermoelectric Nanomaterials. NewYork: Springer; 2013. 3.

    Book  Google Scholar 

  6. Girard SN, He JQ, Zhou XY, Shoemaker D, Jaworski CM, Uher C, Dravid VP, Heremans JP, Kanatzidis MG. High performance Na-doped PbTe-PbS thermoelectric materials: electronic density of states modification and shape-controlled nanostructures. J Am Chem Soc. 2011;133(41):16588.

    Article  CAS  Google Scholar 

  7. Pei YZ, Shi XY, LaLonde A, Wang H, Chen LD, Snyder GJ. Convergence of electronic bands for high performance bulk thermoelectrics. Nature. 2011;473(7345):66.

    Article  CAS  Google Scholar 

  8. Wu LH, Li X, Wang SY, Zhang TS, Yang J, Zhang WQ, Chen LD, Yang JH. Resonant level-induced high thermoelectric response in indium-doped GeTe. Npg Asia Mater. 2017;9(1):e434.

    Article  CAS  Google Scholar 

  9. Johnsen S, He JQ, Androulakis J, Dravid VP, Todorov I, Chung DY, Kanatzidis MG. Nanostructures boost the thermoelectric performance of PbS. J Am Chem Soc. 2011;133(10):3460.

    Article  CAS  Google Scholar 

  10. Zhang X, Zhang B, Peng KL, Shen XC, Wu GT, Yan YC, Luo SJ, Lu X, Wang GY, Gu HS, Zhou XY. Spontaneously promoted carrier mobility and strengthened phonon scattering in p-type YbZn2Sb2 via a nanocompositing approach. Nano Energy. 2018;43:159.

    Article  CAS  Google Scholar 

  11. Hasan MZ, Kane CL. Colloquium: topological insulators. Rev Mod Phys. 2010;82(4):3045.

    Article  CAS  Google Scholar 

  12. Zhang HJ, Liu CX, Qi XL, Dai X, Fang Z, Zhang SC. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat Phys. 2009;5(6):438.

    Article  CAS  Google Scholar 

  13. Sun GL, Qin XY, Li D, Zhang J, Ren BJ, Zou TH, Xin HX, Paschen SB, Yan XL. Enhanced thermoelectric performance of n-type Bi2Se3 doped with Cu. J Alloys Compd. 2015;639:9.

    Article  CAS  Google Scholar 

  14. Hor YS, Richardella A, Roushan P, Xia Y, Checkelsky JG, Yazdani A, Hasan MZ, Ong NP, Cava RJ. p-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications. Phys Rev B. 2009;79(19):195208.

    Article  CAS  Google Scholar 

  15. Lind H, Lidin S, Haussermann U. Structure and bonding properties of (Bi2Se3)m(Bi2)n stacks by first-principles density functional theory. Phys Rev B. 2005;72(18):184101.

    Article  CAS  Google Scholar 

  16. Samanta M, Pal K, Pal P, Waghmare UV, Biswas K. Localized vibrations of Bi bilayer leading to ultralow lattice thermal conductivity and high thermoelectric performance in weak topological insulator n-Type BiSe. J Am Chem Soc. 2018;140(17):5866.

    Article  CAS  Google Scholar 

  17. Wei P, Yang J, Guo L, Wang SY, Wu LH, Xu XF, Zhao WY, Zhang QJ, Zhang WQ, Dresselhaus MS, Yang JH. Minimum thermal conductivity in weak topological insulators with bismuth-based stack structure. Adv Funct Mater. 2016;26(29):5360.

    Article  CAS  Google Scholar 

  18. Shannon RD, Prewitt CT. Effective ionic radii in oxides and fluorides. Acta Crystall B-Struct. 1969;B(25):925.

    Article  Google Scholar 

  19. Shen JJ, Zhu TJ, Zhao XB, Zhang SN, Yang SH, Yin ZZ. Recrystallization induced in situ nanostructures in bulk bismuth antimony tellurides: a simple top down route and improved thermoelectric properties. Energy Environ Sci. 2010;3(10):1519.

    Article  CAS  Google Scholar 

  20. Zhan M, Zhang C, You YH, Xie HY, Chi H, Sun Y, Liu W, Su XL, Yan YG, Tang XF, Uher C. Electron density optimization and the anisotropic thermoelectric properties of Ti self-intercalated Ti1+xS2 compounds. Acs Appl Mater Inter. 2018;10(38):32344.

    Article  CAS  Google Scholar 

  21. Gao Q, Chen L. Effect of Cu doping on microstructure and thermal stability of Ge2Sb2Te5 thin film. Appl Phys A-Mater. 2019;125(8):564.

    Article  CAS  Google Scholar 

  22. Zhao LD, Lo SH, He JQ, Li H, Biswas K, Androulakis J, Wu CI, Hogan TP, Chung DY, Dravid VP, Kanatzidis MG. High performance thermoelectrics from earth-abundant materials: enhanced figure of merit in PbS by second phase nanostructures. J Am Chem Soc. 2011;133(50):20476.

    Article  CAS  Google Scholar 

  23. Shen JW, Chen ZW, Lin SQ, Zheng LL, Li W, Pei YZ. Single parabolic band behavior of thermoelectric p-type CuGaTe2. J Mater Chem C. 2016;4(1):209.

    Article  CAS  Google Scholar 

  24. Xie HY, Su XL, Yan YG, Liu W, Chen LJ, Fu JF, Yang JH, Uher C, Tang XF. Thermoelectric performance of CuFeS2+2x composites prepared by rapid thermal explosion. Npg Asia Mater. 2017;9(6):e390.

    Article  CAS  Google Scholar 

  25. Callaway J, Vonbaeyer HC. Effect of Point Imperfections on Lattice Thermal Conductivity. Phys Rev Lett. 1960;5(5):223.

    Google Scholar 

  26. Bessas D, Sergueev I, Wille HC, Persson J, Ebling D, Hermann RP. Lattice dynamics in Bi2Te3 and Sb2Te3: Te and Sb density of phonon states. Phys Rev. 2012;86(22):224301.

    Article  CAS  Google Scholar 

  27. Zhu TJ, Fu CG, Xie HH, Liu YT, Feng B, Xie J, Zhao XB. Lattice thermal conductivity and spectral phonon scattering in FeVSb-based half-Heusler compounds. Europhys Lett. 2013;104(4):46003.

    Article  CAS  Google Scholar 

  28. Moshwan R, Liu WD, Shi XL, Wang YP, Zou J, Chen ZG. Realizing high thermoelectric properties of SnTe via synergistic band engineering and structure engineering. Nano Energy. 2019;65:104056.

    Article  CAS  Google Scholar 

  29. Zhou BQ, Sun C, Wang X, Bu ZL, Li W, Ang R, Pei YZ. Transport properties of CdSb alloys with a promising thermoelectric performance. ACS Appl Mater Inter. 2019;11(30):27098.

    Article  CAS  Google Scholar 

  30. Oh MW, Son JH, Kim BS, Park SD, Min BK, Lee HW. Antisite defects in n-type Bi2(Te, Se)3: experimental and theoretical studies. J Appl Phys. 2014;115(13):1.

    Article  CAS  Google Scholar 

  31. Son JH, Oh MW, Kim BS, Park SD, Min BK, Kim MH, Lee HW. Effect of ball milling time on the thermoelectric properties of p-type (Bi, Sb)2Te3. J Alloys Compd. 2013;566:168.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Graduate Scientific Research and Innovation Foundation of Chongqing, China (No. CYB 19064), the National Natural Science Foundation of China (Nos. 51772035, 11674040, 51472036 and 51672270), the Fundamental Research Funds for the Central Universities (No. 106112017CDJQJ308821), the Key Research Program of Frontier Sciences, CAS (No. QYZDB-SSW-SLH016), the CSC Scholarship (No. 201806050180), 2019 ITS Summer Fellowship, the Natural Science Foundation of Chongqing, China (No.cstc2019jcyj-msxmX0554) and the Starting Research Fund from Chongqing University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Yuan Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1807 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, XC., Zhang, X., Zhang, B. et al. Optimizing thermoelectric properties of BiSe through Cu additive enhanced effective mass and phonon scattering. Rare Met. 39, 1374–1382 (2020). https://doi.org/10.1007/s12598-020-01491-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01491-5

Keywords

Navigation