Skip to main content
Log in

Arabidopsis FAX1 mediated fatty acid export is required for the transcriptional regulation of anther development and pollen wall formation

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key Message

The mutation of FAX1 (Fatty Acid Export 1) disrupts ROS homeostasis and suppresses transcription activity of DYT1-TDF1-AMS-MS188 genetic network, leading to atypical tapetum PCD and defective pollen formation in Arabidopsis.

Abstract

Fatty acids (FAs) have multiple important biological functions and exert diverse cellular effects through modulating Reactive Oxygen Species (ROS) homeostasis. Arabidopsis FAX1 (Fatty Acid Export 1) mediates the export of de novo synthesized FA from chloroplast and loss of function of FAX1 impairs male fertility. However, mechanisms underlying the association of FAX1-mediated FA export with male sterility remain enigmatic. In this study, by using an integrated approach that included morphological, cytological, histological, and molecular analyses, we revealed that loss of function of FAX1 breaks cellular FA/lipid homeostasis, which disrupts ROS homeostasis and suppresses transcriptional activation of the DYT1-TDF1-AMS-MS188 genetic network of anther development, impairing tapetum development and pollen wall formation, and resulting in male sterility. This study provides new insights into the regulatory network for male reproduction in plants, highlighting an important role of FA export-mediated ROS homeostasis in the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agmon E, Stockwell BR (2017) Lipid homeostasis and regulated cell death. Curr Opin Chem Biol 39:83–89

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amir R, Hussain S, Noor-ul-Ain H, Hussain A, Yun BW (2019) ROS mediated plant defense against abiotic stresses. In: Khurana SMP, Gaur RK (eds) Plant biotechnology: progress in genomic era. Springer, Singapore, pp 481–515

    Google Scholar 

  • Anderson DH (2006) Role of lipids in the MAPK signaling pathway. Prog Lipid Res 45(2):102–119

    CAS  PubMed  Google Scholar 

  • Ariizumi T, Toriyama K (2011) Genetic regulation of sporopollenin synthesis and pollen exine development. Annu Rev Plant Biol 62:437–460

    CAS  PubMed  Google Scholar 

  • Bedinger P (1992) The remarkable biology of pollen. Plant Cell 4:879

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bush SM, Krysan PJ (2007) Mutational evidence that the Arabidopsis MAP kinase MPK6 is involved in anther, inflorescence, and embryo development. J Exp Bot 58(8):2181–2191

    CAS  PubMed  Google Scholar 

  • Chen QF, Xiao S, Chye ML (2008) Arabidopsis ACBP6 is an acyl-CoA-binding protein associated with phospholipid metabolism. Plant Signal Behav 3:1019–1020

    PubMed  PubMed Central  Google Scholar 

  • Chen W, Yu X-H, Zhang K, Shi J, De Oliveira S, Schreiber L, Shanklin J, Zhang D (2011) Male Sterile2 encodes a plastid-localized fatty acyl carrier protein reductase required for pollen exine development in Arabidopsis. Plant Physiol 157:842–853

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi H, Jin JY, Choi S, Hwang JU, Kim YY, Suh MC, Lee Y (2011) An ABCG/WBC-type ABC transporter is essential for transport of sporopollenin precursors for exine formation in developing pollen. Plant J 65:181–193

    CAS  PubMed  Google Scholar 

  • Choi H, Ohyama K, Kim YY, Jin JY, Lee SB, Yamaoka Y, Muranaka T, Suh MC, Fujioka S, Lee Y (2014) The role of Arabidopsis ABCG9 and ABCG31 ATP binding cassette transporters in pollen fitness and the deposition of steryl glycosides on the pollen coat. Plant Cell 26:310–324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    CAS  PubMed  Google Scholar 

  • Dobritsa AA, Shrestha J, Morant M, Pinot F, Matsuno M, Swanson R, Møller BL, Preuss D (2009) CYP704B1 is a long-chain fatty acid ω-hydroxylase essential for sporopollenin synthesis in pollen of Arabidopsis. Plant Physiol 151:574–589

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fath A, Bethke PC, Jones RL (2001) Enzymes that scavenge reactive oxygen species are down-regulated prior to gibberellic acid-induced programmed cell death in barley aleurone. Plant Physiol 126:156–166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu L, Liang W, Yin C, Cui X, Zong J, Wang X, Hu J, Zhang D (2011) Rice MADS3 regulates ROS homeostasis during late anther development. Plant Cell 23:515–533

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang MD, Chen TLL, Huang AH (2013) Abundant type III lipid transfer proteins in Arabidopsis tapetum are secreted to the locule and become a constituent of the pollen exine. Plant Physiol 163:1218–1229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobowitz JR, Doyle WC, Weng JK (2019) PRX9 and PRX40 are extensin peroxidases essential for maintaining tapetum and microspore cell wall integrity during Arabidopsis anther development. Plant Cell 31:848–861

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones-Rhoades MW, Borevitz JO, Preuss D (2007) Genome-wide expression profiling of the Arabidopsis female gametophyte identifies families of small, secreted proteins. PLoS Genet 3:e171

    PubMed Central  Google Scholar 

  • Li N, Gügel IL, Giavalisco P, Zeisler V, Schreiber L, Soll J, Philippar K (2015) FAX1, a novel membrane protein mediating plastid fatty acid export. PLoS Biol 13:e1002053

    PubMed  PubMed Central  Google Scholar 

  • Li DD, Xue JS, Zhu J, Yang ZN (2017) Gene regulatory network for tapetum development in Arabidopsis thaliana. Front Plant Sci 8:1559

    PubMed  PubMed Central  Google Scholar 

  • Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, DeBono A, Durrett TP (2013) Acyl-lipid metabolism. Arabidopsis Book 11:e0161

    PubMed  PubMed Central  Google Scholar 

  • Liu YY, Chen YQ, Shi L, Shi JX (2018) Investigations into the mechanisms underlying the effects of Arabidopsis thaliana fatty acid export 1 (FAX1) in male reproductive development. Plant Physiol J 54:145–156

    Google Scholar 

  • Luo Y, Yang X, Gao Y (2013) Mitochondrial DNA response to high altitude: a new perspective on high-altitude adaptation. Mitochondrial DNA 24:313–319

    CAS  PubMed  Google Scholar 

  • Mano JI, Biswas M, Sugimoto K (2019) Reactive carbonyl species: a missing link in ROS signaling. Plants 8(10):391

    CAS  PubMed Central  Google Scholar 

  • Morant M, Jørgensen K, Schaller H, Pinot F, Møller BL, Werck-Reichhart D, Bak S (2007) CYP703 is an ancient cytochrome P450 in land plants catalyzing in-chain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen. Plant Cell 19:1473–1487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mühlenbock P, Plaszczyca M, Plaszczyca M, Mellerowicz E, Karpinski S (2007) Lysigenous aerenchyma formation in Arabidopsis is controlled by LESION SIMULATING DISEASE1. Plant Cell 19:3819–3830

    PubMed  PubMed Central  Google Scholar 

  • Obara K, Kuriyama H, Fukuda H (2001) Direct evidence of active and rapid nuclear degradation triggered by vacuole rupture during programmed cell death in Zinnia. Plant Physiol 125:615–626

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paxson-Sowders DM, Dodrill CH, Owen HA, Makaroff CA (2001) DEX1, a novel plant protein, is required for exine pattern formation during pollen development in Arabidopsis. Plant Physiol 127:1739–1749

    CAS  PubMed  PubMed Central  Google Scholar 

  • Piffanelli P, Ross JH, Murphy D (1998) Biogenesis and function of the lipidic structures of pollen grains. Sex Plant Reprod 11:65–80

    CAS  Google Scholar 

  • Pighin JA, Zheng H, Balakshin LJ, Goodman IP, Western TL, Jetter R, Kunst L, Samuels AL (2004) Plant cuticular lipid export requires an ABC transporter. Science 306:702–704

    CAS  PubMed  Google Scholar 

  • Pike LS, Smift AL, Croteau NJ, Ferrick DA, Wu M (2011) Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochimica et Biophysica Acta (BBA) 1807:726–734

    CAS  Google Scholar 

  • Qu K, Shen NY, Xu XS, Su HB, Wei JC, Tai MH, Zhou L, Zhang YL, Liu C (2013) Emodin induces human T cell apoptosis in vitro by ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction. Acta Pharmacol Sin 34:1217–1228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quilichini TD, Samuels AL, Douglas CJ (2014) ABCG26-mediated polyketide trafficking and hydroxycinnamoyl spermidines contribute to pollen wall exine formation in Arabidopsis. Plant Cell 26:4483–4498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schippers JH, Nguyen HM, Lu D, Schmidt R, Mueller-Roeber B (2012) ROS homeostasis during development: an evolutionary conserved strategy. Cell Mol Life Sci 69:3245–3257

    CAS  PubMed  Google Scholar 

  • Scott RJ, Spielman M, Dickinson HG (2004) Stamen structure and function. Plant Cell 16:S46–S60

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi J, Cui M, Yang L, Kim YJ, Zhang D (2015) Genetic and biochemical mechanisms of pollen wall development. Trends Plant Sci 20:741–753

    CAS  PubMed  Google Scholar 

  • Tanaka A, Yamamoto A, Murota K, Tsujiuchi T, Iwamori M, Fukushima N (2017) Polyunsaturated fatty acids induce ovarian cancer cell death through ROS-dependent MAP kinase activation. Biochem Biophys Res Commun 493(1):468–473

    CAS  PubMed  Google Scholar 

  • Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390

    PubMed  PubMed Central  Google Scholar 

  • Vizcay-Barrena G, Wilson ZA (2006) Altered tapetal PCD and pollen wall development in the Arabidopsis ms1 mutant. J Exp Bot 57:2709–2717

    CAS  PubMed  Google Scholar 

  • Xiao S, Li HY, Zhang JP, Chan SW, Chye ML (2008) Arabidopsis acyl-CoA-binding proteins ACBP4 and ACBP5 are subcellularly localized to the cytosol and ACBP4 depletion affects membrane lipid composition. Plant Mol Biol 68:571–583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie HT, Wan ZY, Li S, Zhang Y (2014) Spatiotemporal production of reactive oxygen species by NADPH oxidase is critical for tapetal programmed cell death and pollen development in Arabidopsis. Plant Cell 26:2007–2023

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Hh, Chen L, Xu FQ, Guo WS, Wang S, Yang ZN, Zhang S (2017) ACOS5 is required for primexine formation and exine pattern formation during microsporogenesis in Arabidopsis. J Plant Biol 60:404–412

    CAS  Google Scholar 

  • Xing S, Zachgo S (2008) ROXY1 and ROXY2, two Arabidopsis glutaredoxin genes, are required for anther development. Plant J 53:790–801

    CAS  PubMed  Google Scholar 

  • Xu J, Ding Z, Vizcay-Barrena G, Shi J, Liang W, Yuan Z, Werck-Reichhart D, Schreiber L, Wilson ZA, Zhang D (2014) ABORTED MICROSPORES acts as a master regulator of pollen wall formation in Arabidopsis. Plant Cell 26:1544–1556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav V, Molina I, Ranathunge K, Castillo IQ, Rothstein SJ, Reed JW (2014) ABCG transporters are required for suberin and pollen wall extracellular barriers in Arabidopsis. Plant Cell 26:3569–3588

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yi J, Moon S, Lee YS, Zhu L, Liang W, Zhang D, Jung KH, An G (2016) Defective tapetum cell death 1 (DTC1) regulates ROS levels by binding to metallothionein during tapetum degeneration. Plant Physiol 170:1611–1623

    CAS  PubMed  Google Scholar 

  • Zhang ZB, Zhu J, Gao JF, Wang C, Li H, Li H, Zhang HQ, Zhang S, Wang DM, Wang QX (2007) Transcription factor AtMYB103 is required for anther development by regulating tapetum development, callose dissolution and exine formation in Arabidopsis. Plant J 52:528–538

    CAS  PubMed  Google Scholar 

  • Zhang D, Shi J, Yang X (2016) Role of lipid metabolism in plant pollen exine development. In: Lipids in plant and algae development. Springer, New York, pp 315–337

  • Zhao G, Shi J, Liang W, Xue F, Luo Q, Zhu L, Qu G, Chen M, Schreiber L, Zhang D (2015) Two ATP binding cassette G transporters, rice ATP binding cassette G26 and ATP binding cassette G15, collaboratively regulate rice male reproduction. Plant Physiol 169:2064–2079

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao G, Shi J, Liang W, Zhang D (2016) ATP binding cassette G transporters and plant male reproduction. Plant Signal Behav 11:e1136764

    PubMed  PubMed Central  Google Scholar 

  • Zhu J, Lou Y, Xu X, Yang ZN (2011) A genetic pathway for tapetum development and function in Arabidopsis. J Integr Plant Biol 53:892–900

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant Numbers 31861163002, 31570312, 31671511 and 31500297]; and the Programme of Introducing Talents of Discipline to Universities [111 Project, B14016].

Author information

Authors and Affiliations

Authors

Contributions

JX and LZ designed the research, LZ, HZ, YL and YH carried out experiments. JX, LZ and JS analyzed data and wrote the manuscript. And all authors reviewed and commented on the manuscript.

Corresponding authors

Correspondence to Jianxin Shi or Jie Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 871 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., He, S., Liu, Y. et al. Arabidopsis FAX1 mediated fatty acid export is required for the transcriptional regulation of anther development and pollen wall formation. Plant Mol Biol 104, 187–201 (2020). https://doi.org/10.1007/s11103-020-01036-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-020-01036-5

Keywords

Navigation