Skip to main content

Advertisement

Log in

Nine decades of major compositional changes in a Central European beech forest protected area

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Lowland forests in Europe went through dramatic changes in the last century. Data accumulated from the nature reserve Buky u Vysokého Chvojna in the Czech Republic provide a unique opportunity to follow beech forest development using a time series consisting of five points in time from 1926 to 2019. Our goal was to reconstruct changes in plant species richness and plant community composition over this period. Based on the available data, we concluded that vascular plant species richness per plot declined by at least 50%, possibly by 75% since 1951. Compositional dissimilarities between the first survey and subsequent resurveys revealed a directional trajectory of vegetation changes. Treating time as an environmental factor and tree canopy cover as a covariable (and vice versa) in canonical correspondence analysis permutation tests where only the herbaceous layer was used, time turned out to be much more important. Variance partitioning revealed that time explained 28.1% and tree canopy 4.2% of the variation in the species data. The two variables together explained 36.8% of the variance, revealing that the shared effect of these two variables was 4.5%. Ellenberg-type indicator values point to a possible role of increasing nitrogen and decreasing pH. Several other factors potentially responsible for observed vegetation changes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bernhardt-Römermann M et al (2015) Drivers of temporal changes in temperate forest plant diversity vary across spatial scales. Global Change Biol 21:3726–3737. https://doi.org/10.1111/gcb.12993

    Article  Google Scholar 

  • Bose AK, Weiskittell A, Wagner RG (2017) A three decade assessment of climate-associated changes in forest composition across the north-eastern USA. J Appl Ecol 54:1592–1604. https://doi.org/10.1111/1365-2664.12917

    Article  CAS  Google Scholar 

  • Braun-Blanquet J (1932) Plant sociology. McGraw-Hill, New York

    Google Scholar 

  • Brázdil R et al (2018) Windstorms and forest disturbances in the Czech Lands: 1801–2015. Agric Froest Meteor 250251:47–63

    Google Scholar 

  • Brocano MJ, Vila M, Boada M (2005) Evidence of Pseudotsuga menziesii naturalization in montane Mediterranean forests. For Ecol Manag 211:257–263. https://doi.org/10.1016/j.foreco.2005.02.055

    Article  Google Scholar 

  • Chmura D, Sierka E (2006) Relation between invasive plant and species richness of forest floor vegetation: a study of Impatiens parviflora DC. Polish J Ecol 54:417–428

    Google Scholar 

  • Chmura D, Sierka E (2007) The invasibility of deciduous forest communities after disturbance: a case study of Carex brizoides and Impatiens parviflora invasion. For Ecol Manag 242:487–495. https://doi.org/10.1016/j.foreco.2007.01.083

    Article  Google Scholar 

  • Chytrý M, Tichý L, Dřevojan P, Sádlo J, Zelený D (2018) Ellenberg-type indicator values for the Czech flora. Preslia 90:83–103

    Google Scholar 

  • Depauw L et al (2019) Interactive effects of past land use and recent forest management on the understory community in temperate oak forest in Southern Sweden. J Veg Sci 30:917–928. https://doi.org/10.1111/jvs.12770

    Article  Google Scholar 

  • Depauw L et al (2020) Light availability and land-use history drive biodiversity and functional changes in forest herb layer communities. J Ecol 108:1411–1425

    CAS  Google Scholar 

  • Diekmann M, Kühne A, Isermann M (2007) Random vs non-random sampling: effects on patterns of species abundance, species richness and vegetation-environment relationships. Folia Geobot 42:179–190

    Google Scholar 

  • Diekmann M, Effertz H, Baranowski M, Dupré C (2016) Weak effects on plant diversity of two invasive Impatiens species. Plant Ecol 217:1503–1514. https://doi.org/10.1007/s11258-016-0663-0

    Article  Google Scholar 

  • Dittmann T, Heinken T, Schmidt M (2018) Die Wälder von Magdeburgerforth - eine Wiederholuntersuchung nach sechs Jahren. Tuexenia 38:11–42. https://doi.org/10.14471/2018.38.009

    Article  Google Scholar 

  • Douda J, Boublík K, Doudová J, Kyncl M (2017) Traditional forest management practices stop forest succession and bring back rare plant species. J Appl Ecol 54:761–771. https://doi.org/10.1111/1365-2664.12801

    Article  Google Scholar 

  • Durak T (2010) Long-term trends in vegetation changes of managed versus unmanaged Eastern Carpathian beech forests. For Ecol Manag 260:1333–1344. https://doi.org/10.1016/j.foreco.2010.07.026

    Article  Google Scholar 

  • Dzwonko Z, Loster S (1988) The number and distribution of vascular plant species in island forest communities in the northern part of the West Carpathian foodhills. Folia Geobot Phytotax 23:1–16

    Google Scholar 

  • Ewald J (2003) The calcareous riddle: why are there so many calciphilous species in the Central European flora? Folia Geobot 38:357–366

    Google Scholar 

  • Fiedler J, Procházka F (1972) Buky u Vysokého Chvojna - botanická inventarizační zpráva. Agentura ochrany přírody a krajiny ČR Pardubice.

  • Fischer HS (2015) On the combination of species cover values from different vegetation layers. Appl Veg Sci 18:169–170. https://doi.org/10.1111/avsc.12130

    Article  Google Scholar 

  • Florianová A, Münzbergová Z (2017) Invasive Impatiens parviflora has negative impact on native vegetation in oak-hornbeam forest. Flora 226:10–16. https://doi.org/10.1016/j.flora.2016.11.006

    Article  Google Scholar 

  • Förster A, Becker T, Gerlach A, Meesenburg H, Leuschner C (2017) Long-term change in understory plant communities of conventiuonally managed temperate deciduous forests: effects of nitrogen deposition and forest management. J Veg Sci 28:747–761. https://doi.org/10.1111/jvs.12537

    Article  Google Scholar 

  • Frank D, Finckh M (1997) Impact of Douglas-fir plantations on vegetation and soil in South-Central Chile. Rev Chile Hist Nat 70:191–211

    Google Scholar 

  • Grenfelt P, Engleryd A, Forsius M, Hov O, Rodhe H, Cowling E (2020) Acid rain and air pollution: 50 years of progress in environmental science and policy. Ambio 49:849–864

    Google Scholar 

  • Güler B et al (2016) How plot shape and spatial arrangement affect plant species richness counts: implications for sampling design and rarefaction analyses. J Veg Sci 27(4):692–703. https://doi.org/10.1111/jvs.12411

    Article  Google Scholar 

  • Hanberry BB (2019) Recent shifts in shade tolerance and disturbance traits in forests of the eastern United States. Ecol Process 8:32. https://doi.org/10.1186/s13717-019-0187-3

    Article  Google Scholar 

  • Hédl R (2004a) Vegetation of beech forests in Rychlebské Mountains, Czech Republic, re-inspected after 60 years with assessment of environmental changes. Plant Ecol 170:243–265

    Google Scholar 

  • Hédl R (2004b) Retreat of Dentaria enneaphyllos in Rychlebske hory Mts (Czech Republic), in perspective of habitat preference. Biologia 59:417–423

    Google Scholar 

  • Hédl R (2013) Galio odorati-Fagetum sylvaticae. In: Chytrý M (ed) Vegetace České republiky – Vegetation of the Czech Republic, vol 4. Academia, Praha, pp 245–249

    Google Scholar 

  • Hédl R, Kopecký M, Komárek J (2010) Half century of succession in a temperate oakwood: from species-rich community to mesic forest. Divers distrib 16:267–276. https://doi.org/10.1111/j.1472-4642.2010.00637.x

    Article  Google Scholar 

  • Hofman J (1964) Pěstování douglasky. Státní zemědělské nakladatelství, Praha

    Google Scholar 

  • Holečková Z (2007) Monitoring a ochranářský management flóry a vegetace v přírodní rezervaci Buky u Vysokého Chvojna. Diploma thesis, University of Hradec Králové

  • Kapfer J, Hédl R, Jurasinski G, Kopecký M, Schei FH, Grytnes J-A (2017) Resurveying historical vegetation data-opportunities and challenges. Appl Veg Sci 20:164–171

    Google Scholar 

  • Kaplan Z, Danihelka J, Chrtek J jun., Kirschner J, Kubát K, Štech M, Štěpánek J (eds) (2019) Klíč ke květeně České republiky [Key to the flora of the Czech Republic]. Academia, Praha

  • Kopáček J, Hejzlar J, Krám P, Oulehle F, Posch M (2016) Effect of industrial dust on precipitation chemistry in Czech Republic (Central Europe) from 1850 to 2013. Water Res 103:30–37

    PubMed  Google Scholar 

  • Kopecký M, Macek M (2015) Vegetation resurvey is robust to plot location uncertainity. Divers Distrib 21:322–330. https://doi.org/10.1111/ddi.12299

    Article  PubMed  PubMed Central  Google Scholar 

  • Kučera J, Váňa J, Hradílek Z (2012) Bryophyte flora of the Czech Republic: update of the checklist and Red List and a brief analysis. Preslia 84:813–850

    Google Scholar 

  • Lauschner C, Ellenberg H (2018) Vegetation ecology of Central Europe, vol 1. Springer, Cham

    Google Scholar 

  • McCune B, Mefford NJ (2016) PC-ORD. Multivariate Analysis of Ecological Data, Version 7. MjM Software Design, Glenden Beach, Oregon, USA

  • Midolo G, Alkemade R, Schipper A, Benítez-López A, Perring MP, De Vries W (2019) Impact of nitrogen addition on plant species richness and abundance: a global meta-analysis. Glob Ecol Biogeogr 28:398–413. https://doi.org/10.1111/geb.12856

    Article  Google Scholar 

  • Mikyška R (1927) Lesní rezervace Buky u Vysokého Chvojna. Věda Přír 8:175–179

    Google Scholar 

  • Mikyška R (1956) Fytosociologická studie lesů terasového území v dolních částech povodí Orlice a Loučné. Sborník Čs Akad Zeměd Věd Lesnictví Praha 29:313–370

    Google Scholar 

  • Mikyška R et al (1968) Geobotanická mapa ČSSR. 1. České země. Academia, Praha

  • Naaf T, Kolk J (2016) Initial site conditions and interactions between multiple drivers determine herb-layer changes over five decades in temperate forests. For Ecol Manag 366:153–165. https://doi.org/10.1016/j.foreco.2016.01.041

    Article  Google Scholar 

  • Naaf T, Wulf M (2011) Traits of winner and loser species indicate drivers of herb layer changes over two decades in forests of NW Germany. J Veg Sci 22:516–527. https://doi.org/10.1111/j.1654-1103.2011.01267.x

    Article  Google Scholar 

  • Nagel TA, Iacopetti G, Javornik J, Rozman A, De Frenne P, Selvi F, Verheyen K (2019) Cascading effects of canopy drive long-term changes in understory diversity in temperate old-growth forests of Europe. J Veg Sci 30:905–916. https://doi.org/10.1111/jvs.12767

    Article  Google Scholar 

  • Neuhäuslová Z et al (1998) Map of potential natural vegetation of the Czech Republic. Academia, Praha

    Google Scholar 

  • Orellana IA, Raffaele E (2010) The spread of the exotic conifer Pseudotsuga menziesii in Austrocedrus chilensis forest and shrublands in northwestern Patagonia, Argentina. N Z J For Sci 40:199–209

    Google Scholar 

  • Otýpková Z (2009) The influence of sample plot size on evaluations with Ellenberg indicator values. Biologia 64:1123–1128

    Google Scholar 

  • Peet RP, Christensen NL, Gilliam FS (2014) Temporal patterns in herbaceous layer communities of North Carolina Piedmont. In: Gilliam FS (ed) The herbaceous layer in forests of Eastern North America. Oxford University Press, Oxford, pp 277–318

    Google Scholar 

  • Perring MP et al (2018) Global environmental changes on plant community composition trajectories depend upon management legacies. Glob Chang Biol 24:1722–1740. https://doi.org/10.1111/gcb.14030

    Article  PubMed  Google Scholar 

  • Piessens K, Honnay O, Nackaerts K, Hermy M (2004) Plant species richness and composition of heathland relicts in north-western Belgium: evidence for rescue-effect? J Biogeogr 31:1683–1692

    Google Scholar 

  • Podani J (2000) Introduction to the exploration of multivariate biological data. Backhuys, Leiden

    Google Scholar 

  • Prach J, Kopecký M (2018) Landscape-scale vegetation homogenization in Central European sub-montane forests over the past 50 years. Appl Veg Sci 21:373–384. https://doi.org/10.1111/avsc.12372

    Article  Google Scholar 

  • Rackham O (2008) Ancient woodlands: modern threats. New Phytol 180:571–586

    PubMed  Google Scholar 

  • Reczyńska K, Świerkosz K (2017) Compositional changes in thermophilous oak forests in Poland over time: do they correspond to European trends? Appl Veg Sci 20:293–303. https://doi.org/10.1111/avsc.12290

    Article  Google Scholar 

  • Rogers DA, Rooney TP, Olson D, Waller DM (2008) Shifts in southern Wisconsin forest canopy and understory richness, composition, and heterogeneity. Ecology 89:2482–2492. https://doi.org/10.1890/07-1129.1

    Article  PubMed  Google Scholar 

  • Roman A, Gafta D (2013) Proximity to successionally advanced vegetation patches can make all the difference to plant community assembly. Plant Ecol Divers 6:269–278

    Google Scholar 

  • Rooney TP, Rogers DA (2011) Colonization and effects of garlic mustard, European buckthorn, and Bell’s honeysuckle on understory plants after five decades in southern Wisconsin forests. Invas Plant Sci Manag 4:317–325. https://doi.org/10.1614/IPSM-D-10-00084.1

    Article  Google Scholar 

  • Rooney TP, Wiegmann SM, Rogers DA, Waller DM (2004) Biotic impoverishment and homogenization in unfragmented forest understory communities. Conserv Biol 18:787–798

    Google Scholar 

  • Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, Cambridge

    Google Scholar 

  • Schmidt W, Heinrichs S (2017) Flora und Vegetation der Lengder Burg im Göttinger Wald. Tuexenia 37:95–125

    Google Scholar 

  • Standovár T, Kenderes K (2003) A review on natural stand dynamics in beechwoods of east Central Europe. Appl Ecol Env Res (Budapest) 1:19–46

    Google Scholar 

  • Staude IR et al (2020) Replacements of small- by large-ranged species scale up to diversity loss in Europe’s temperate forest biome. Nat Ecol Evolut. https://doi.org/10.1038/s41559-020-1176-8

    Article  Google Scholar 

  • Strubelt I, Diekmann M, Zacharias D (2017) Changes in species composition and richness in an alluvial hardwood forest over 52 years. J Veg Sci 28:401–412. https://doi.org/10.1111/jvs.12483

    Article  Google Scholar 

  • Šamonil P, Vrška T (2008) Long-term vegetation dynamics in the Šumava Mts. natural spruce-fir-beech forests. Plant Ecol 196:197–214. https://doi.org/10.1007/sl1258-007-9345-2

    Article  Google Scholar 

  • Šebesta J, Šamonil P, Lacina J, Oulehle F, Houška J, Bouček A (2011) Acidification of primeval forests in Ukrajine Carpathians: vegetation and soil changes over six decades. For Ecol Manag 262:1265–1279. https://doi.org/10.1016/j.foreco.2011.06.024

    Article  Google Scholar 

  • Šmilauer P, Lepš J (2014) Multivariate analysis of ecological data, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Świerkosz K, Reczyńska K, Pech P, Hédl R (2018) Syntaxonomy and ecology of beech forest vegetation in southwestern Poland. Phytocoenologia 48:297–320. https://doi.org/10.1127/phyto/2018/0248

    Article  Google Scholar 

  • ter Braak CJF, Šmilauer P (2012) Canoco Reference Manual. Biometris, Wageningen and České Budějovice

    Google Scholar 

  • Trepl L (1984) Über Impatiens parviflora DC. als Agriophyt in Mitteleuropa. Dissert Bot 73:1–398

    Google Scholar 

  • Ujházyová M, Ujházy K, Chytrý M, Willmer W, Čiliak M, Máliš F, Slezák M (2016) Diversity of beech forest vegetation in Eastern Alps, Bohemian Massif and the Western Carpathians. Preslia 88:435–457

    Google Scholar 

  • Vacek S, Černý T, Vacek Z, Podrazský V, Mikeska M, Králíček I (2017) Long-term changes in vegetation and site conditions in beech and spruce forests of lower mountain ranges of Central Europe. For Ecol Manag 398:75–90. https://doi.org/10.1016/j.foreco.2017.05.001

    Article  Google Scholar 

  • Van Couwenberghe R, Collet C, Lacombe E, Gégout J-C (2011) Abundance response of western European forest species along canopy openness and soil pH gradients. For Ecol Manag 2612:1483–1490

    Google Scholar 

  • Vanhellemont M, Baeten L, Verheyen K (2014) Relating changes in understory diversity to environmental drivers in an ancient forest in northern Belgium. Plant Ecol Evol 147:22–32. https://doi.org/10.5091/plecevo.2014.921

    Article  Google Scholar 

  • Večeřa M et al (2019) Alpha diversity of vascular plants in European forests. J Biogeogr 46:1919–1935

    Google Scholar 

  • Verheyen K et al (2017) Combining biodiversity resurveys across regions to advance global change research. Bioscience 67:73–83. https://doi.org/10.1093/biosci/biw150

    Article  Google Scholar 

  • Verheyen K et al (2018) Observer and relocation errors matter in resurveys of historical vegetation plots. J Veget Sci 29:812–823. https://doi.org/10.1111/jvs.12673

    Article  Google Scholar 

  • Verstraeten G, Baeten L, Van den Broeck T, De Frenne P, Demey A, Tack W, Muys B, Verheyen K (2013) Temporal changes in forest plant communities at different site types. Appl Veg Sci 16:237–247. https://doi.org/10.1111/j.1654-109X.2012.01226.x

    Article  Google Scholar 

  • Vild O, Hédl R, Kopecký M, Szabó P, Suchánková S, Zouhar V (2017) The paradox of long-term ungulate impact: increase of plant species richness in temperate forest. Appl Veg Sci 20:282–292. https://doi.org/10.1111/jvs.12642

    Article  PubMed  PubMed Central  Google Scholar 

  • Vild O, Šipoš J, Szabó P, Macek M, Chudomelová M, Kopecký M, Suchánková S, Houška J, Kotačka M, Hédl R (2018) Legacy of historical litter ranking in temperate forest plant communities. J Veg Sci 29:596–606

    Google Scholar 

  • Vojík M, Boublík K (2018) Fear of the dark: decline in plant diversity and invasion of aliaen species due to increased tree canopy density and eutrophication on lowland woodlands. Plant Ecol 219:749–758. https://doi.org/10.1007/s11258-018-0831-5

    Article  Google Scholar 

  • Wagner V et al (2017) Alien plant invasions in European woodlands. Divers Distr 23:969–981. https://doi.org/10.1111/ddi.12592

    Article  Google Scholar 

  • Willner W (2002) Syntaxonomische revision der südmitteleuropäischen Buchenwälder. Phytocoenologia 32:337–453

    Google Scholar 

  • Wilson JB, Agnew ADQ, Roxburgh SH (2019) The nature of plant communities. Cambridge University Press, Cambridge

    Google Scholar 

  • Woods KD, Hicks DJ, Schultz J (2012) Losses in understory diversity over three decades in an old-growth cool-temperate forest in Michigan, USA. Can J For Res 42:532–549. https://doi.org/10.1139/x2012-006

    Article  Google Scholar 

Download references

Acknowledgements

We greatly appreciate the help provided with tree ring analyses by Jan Altman. We also thank Zdeněk Soldán for identification of bryophytes and Bohumil Trávníček for identification of Rubus species. Steven Brewer, Milan Chytrý, František Krahulec, Jan Lepš, Kyle Palmquist, Jindřich Prach, and Honza Rejmánek provided helpful comments and suggestions. Pardubice Regional Authority and Forest Cooperative in Vysoké Chvojno provided the research permit. The study was supported by the funds of Specific research provided by the Ministry of Education of the Czech Republic No. 2117/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romana Prausová.

Additional information

Communicated by Kyle Palmquist.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 111 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prausová, R., Doležal, J. & Rejmánek, M. Nine decades of major compositional changes in a Central European beech forest protected area. Plant Ecol 221, 1005–1016 (2020). https://doi.org/10.1007/s11258-020-01057-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-020-01057-6

Keywords

Navigation