Skip to main content

Advertisement

Log in

Prognostic Role of Immune Markers in Triple Negative Breast Carcinoma

  • Original Article
  • Published:
Pathology & Oncology Research

Abstract

Tumor immune microenvironment (TIME) is a significant prognostic parameter for triple negative breast carcinomas (TNBC) due to being a target for immunotherapeutic agents and its essential role during the cancer immunoediting process. In this study, CD8, FOXP3, CD163, PD-L1/SP142 and PD-L1/SP263 antibodies were examined in a sample of 51 TNBC cases. Patients who received neoadjuvant therapy were excluded. CD8, FOXP3 and CD163 antibodies were evaluated separately in intratumoral area (ITA) and tumor stroma (TS). PD-L1 status was also examined in tumor cells (TC) and immune cells (IC) using both SP142 and SP263 antibodies. In multivariate Cox regressions, the only antibody that was found to be significantly associated with survival was SP142. SP142-positivity in TC and IC was related to increased overall survival. Higher CD163 expression in ITA and SP263-positivity in IC were associated with younger age. Lymphatic/angioinvasion was more frequent in cases with negative/low CD8 and FOXP3 expressions. Moreover, metastatic axillary lymph node(s) was associated with negative/low FOXP3 expression in TS. CD8, FOXP3, CD163, SP142 and SP263 expressions were positively correlated with each other, except a mild discordance caused by CD163 in ITA. Although PD-L1 status with both SP142 and SP263 antibodies were concordant in the majority of cases, 33.3% and 13.7% of the cases showed SP142-negative/SP263-positive pattern in TC and IC respectively. In conclusion, we suggest that composition, density and localization of the immune cells and the check point molecules are important prognostic parameters in TNBC. Immunohistochemistry can be used as an accessible and less expensive tool to demonstrate TIME.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Material

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  2. Lehmann BD, Pietenpol JA (2014) Identification and use of biomarkers in treatment strategies for triple-negative breast cancer subtypes. J Pathol 232(2):142–150. https://doi.org/10.1002/path.4280

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sporikova Z, Koudelakova V, Trojanec R, Hajduch M (2018) Genetic markers in triple-negative breast Cancer. Clinical breast cancer 18(5):e841–e850. https://doi.org/10.1016/j.clbc.2018.07.023

    Article  CAS  PubMed  Google Scholar 

  4. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P, Narod SA (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clinical cancer research : an official journal of the American Association for Cancer Research 13 (15 Pt 1):4429–4434. doi:https://doi.org/10.1158/1078-0432.CCR-06-3045

  5. Chacon RD, Costanzo MV (2010) Triple-negative breast cancer. Breast cancer research : BCR 12 Suppl 2:S3. doi:https://doi.org/10.1186/bcr2574

  6. Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V (2007) Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer registry. Cancer 109(9):1721–1728. https://doi.org/10.1002/cncr.22618

    Article  PubMed  Google Scholar 

  7. Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, Karaca G, Troester MA, Tse CK, Edmiston S, Deming SL, Geradts J, Cheang MC, Nielsen TO, Moorman PG, Earp HS, Millikan RC (2006) Race, breast cancer subtypes, and survival in the Carolina breast Cancer study. Jama 295(21):2492–2502. https://doi.org/10.1001/jama.295.21.2492

    Article  CAS  PubMed  Google Scholar 

  8. Hubalek M, Czech T, Muller H (2017) Biological subtypes of triple-negative breast Cancer. Breast care 12(1):8–14. https://doi.org/10.1159/000455820

    Article  PubMed  PubMed Central  Google Scholar 

  9. Badve S, Dabbs DJ, Schnitt SJ, Baehner FL, Decker T, Eusebi V, Fox SB, Ichihara S, Jacquemier J, Lakhani SR, Palacios J, Rakha EA, Richardson AL, Schmitt FC, Tan PH, Tse GM, Weigelt B, Ellis IO, Reis-Filho JS (2011) Basal-like and triple-negative breast cancers: a critical review with an emphasis on the implications for pathologists and oncologists. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc 24(2):157–167. https://doi.org/10.1038/modpathol.2010.200

    Article  Google Scholar 

  10. Mittal D, Gubin MM, Schreiber RD, Smyth MJ (2014) New insights into cancer immunoediting and its three component phases--elimination, equilibrium and escape. Curr Opin Immunol 27:16–25. https://doi.org/10.1016/j.coi.2014.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 331(6024):1565–1570. https://doi.org/10.1126/science.1203486

    Article  CAS  PubMed  Google Scholar 

  12. Dunn GP, Old LJ, Schreiber RD (2004) The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21(2):137–148. https://doi.org/10.1016/j.immuni.2004.07.017

    Article  CAS  PubMed  Google Scholar 

  13. Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, Wienert S, Van den Eynden G, Baehner FL, Penault-Llorca F, Perez EA, Thompson EA, Symmans WF, Richardson AL, Brock J, Criscitiello C, Bailey H, Ignatiadis M, Floris G, Sparano J, Kos Z, Nielsen T, Rimm DL, Allison KH, Reis-Filho JS, Loibl S, Sotiriou C, Viale G, Badve S, Adams S, Willard-Gallo K, Loi S, International TWG (2015) The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an international TILs working group 2014. Annals of oncology : official journal of the European Society for Medical Oncology 26(2):259–271. https://doi.org/10.1093/annonc/mdu450

    Article  CAS  Google Scholar 

  14. Castaneda CA, Mittendorf E, Casavilca S, Wu Y, Castillo M, Arboleda P, Nunez T, Guerra H, Barrionuevo C, Dolores-Cerna K, Belmar-Lopez C, Abugattas J, Calderon G, De La Cruz M, Cotrina M, Dunstan J, Gomez HL, Vidaurre T (2016) Tumor infiltrating lymphocytes in triple negative breast cancer receiving neoadjuvant chemotherapy. World journal of clinical oncology 7(5):387–394. https://doi.org/10.5306/wjco.v7.i5.387

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ladoire S, Martin F, Ghiringhelli F (2011) Prognostic role of FOXP3+ regulatory T cells infiltrating human carcinomas: the paradox of colorectal cancer. Cancer immunology, immunotherapy : CII 60(7):909–918. https://doi.org/10.1007/s00262-011-1046-y

    Article  CAS  PubMed  Google Scholar 

  16. Adams TA, Vail PJ, Ruiz A, Mollaee M, McCue PA, Knudsen ES, Witkiewicz AK (2018) Composite analysis of immunological and metabolic markers defines novel subtypes of triple negative breast cancer. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc 31(2):288–298. https://doi.org/10.1038/modpathol.2017.126

    Article  CAS  Google Scholar 

  17. Caldwell C Jr, Johnson CE, Balaji VN, Balaji GA, Hammer RD, Kannan R (2017) Identification and validation of a PD-L1 binding peptide for determination of PDL1 expression in tumors. Sci Rep 7(1):13682. https://doi.org/10.1038/s41598-017-10946-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Francisco LM, Sage PT, Sharpe AH (2010) The PD-1 pathway in tolerance and autoimmunity. Immunol Rev 236:219–242. https://doi.org/10.1111/j.1600-065X.2010.00923.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Beckers RK, Selinger CI, Vilain R, Madore J, Wilmott JS, Harvey K, Holliday A, Cooper CL, Robbins E, Gillett D, Kennedy CW, Gluch L, Carmalt H, Mak C, Warrier S, Gee HE, Chan C, McLean A, Walker E, McNeil CM, Beith JM, Swarbrick A, Scolyer RA, O'Toole SA (2016) Programmed death ligand 1 expression in triple-negative breast cancer is associated with tumour-infiltrating lymphocytes and improved outcome. Histopathology 69(1):25–34. https://doi.org/10.1111/his.12904

    Article  PubMed  Google Scholar 

  20. Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704. https://doi.org/10.1146/annurev.immunol.26.021607.090331

    Article  CAS  PubMed  Google Scholar 

  21. Atezolizumab Combo Approved for PD-L1-positive TNBC (2019). Cancer discovery 9 (5):OF2. doi:https://doi.org/10.1158/2159-8290.CD-NB2019-038

  22. Schmid P, Rugo HS, Adams S, Schneeweiss A, Barrios CH, Iwata H, Dieras V, Henschel V, Molinero L, Chui SY, Maiya V, Husain A, Winer EP, Loi S, Emens LA, Investigators IM (2020) Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet Oncology 21(1):44–59. https://doi.org/10.1016/S1470-2045(19)30689-8

    Article  CAS  PubMed  Google Scholar 

  23. Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, Fitzgibbons PL, Francis G, Goldstein NS, Hayes M, Hicks DG, Lester S, Love R, Mangu PB, McShane L, Miller K, Osborne CK, Paik S, Perlmutter J, Rhodes A, Sasano H, Schwartz JN, Sweep FC, Taube S, Torlakovic EE, Valenstein P, Viale G, Visscher D, Wheeler T, Williams RB, Wittliff JL, Wolff AC (2010) American Society of Clinical Oncology/college of American pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 28(16):2784–2795. https://doi.org/10.1200/JCO.2009.25.6529

    Article  Google Scholar 

  24. Hida AI, Sagara Y, Yotsumoto D, Kanemitsu S, Kawano J, Baba S, Rai Y, Oshiro Y, Aogi K, Sagara Y, Ohi Y (2016) Prognostic and predictive impacts of tumor-infiltrating lymphocytes differ between triple-negative and HER2-positive breast cancers treated with standard systemic therapies. Breast Cancer Res Treat 158(1):1–9. https://doi.org/10.1007/s10549-016-3848-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hida AI, Ohi Y (2015) Evaluation of tumor-infiltrating lymphocytes in breast cancer; proposal of a simpler method. Annals of oncology : official journal of the European Society for Medical Oncology 26(11):2351. https://doi.org/10.1093/annonc/mdv363

    Article  CAS  Google Scholar 

  26. Ohtani H, Mori-Shiraishi K, Nakajima M, Ueki H (2015) Defining lymphocyte-predominant breast cancer by the proportion of lymphocyte-rich stroma and its significance in routine histopathological diagnosis. Pathol Int 65(12):644–651. https://doi.org/10.1111/pin.12355

    Article  PubMed  PubMed Central  Google Scholar 

  27. Herrero-Vicent C, Guerrero A, Gavila J, Gozalbo F, Hernandez A, Sandiego S, Algarra MA, Calatrava A, Guillem-Porta V, Ruiz-Simon A (2017) Predictive and prognostic impact of tumour-infiltrating lymphocytes in triple-negative breast cancer treated with neoadjuvant chemotherapy. Ecancermedicalscience 11:759. https://doi.org/10.3332/ecancer.2017.759

    Article  PubMed  PubMed Central  Google Scholar 

  28. O'Loughlin M, Andreu X, Bianchi S, Chemielik E, Cordoba A, Cserni G, Figueiredo P, Floris G, Foschini MP, Heikkila P, Kulka J, Liepniece-Karele I, Regitnig P, Reiner A, Ryska A, Sapino A, Shalaby A, Stovgaard ES, Quinn C, Walsh EM, Zolota V, Glynn SA, Callagy G (2018) Reproducibility and predictive value of scoring stromal tumour infiltrating lymphocytes in triple-negative breast cancer: a multi-institutional study. Breast Cancer Res Treat 171(1):1–9. https://doi.org/10.1007/s10549-018-4825-8

    Article  PubMed  Google Scholar 

  29. Denkert C, von Minckwitz G, Darb-Esfahani S, Lederer B, Heppner BI, Weber KE, Budczies J, Huober J, Klauschen F, Furlanetto J, Schmitt WD, Blohmer JU, Karn T, Pfitzner BM, Kummel S, Engels K, Schneeweiss A, Hartmann A, Noske A, Fasching PA, Jackisch C, van Mackelenbergh M, Sinn P, Schem C, Hanusch C, Untch M, Loibl S (2018) Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. The Lancet Oncology 19(1):40–50. https://doi.org/10.1016/S1470-2045(17)30904-X

    Article  PubMed  Google Scholar 

  30. Stanton SE, Disis ML (2016) Clinical significance of tumor-infiltrating lymphocytes in breast cancer. Journal for immunotherapy of cancer 4:59. https://doi.org/10.1186/s40425-016-0165-6

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tiainen S, Tumelius R, Rilla K, Hamalainen K, Tammi M, Tammi R, Kosma VM, Oikari S, Auvinen P (2015) High numbers of macrophages, especially M2-like (CD163-positive), correlate with hyaluronan accumulation and poor outcome in breast cancer. Histopathology 66(6):873–883. https://doi.org/10.1111/his.12607

    Article  PubMed  Google Scholar 

  32. Yang M, Li Z, Ren M, Li S, Zhang L, Zhang X, Liu F (2018) Stromal infiltration of tumor-associated macrophages conferring poor prognosis of patients with basal-like breast carcinoma. J Cancer 9(13):2308–2316. https://doi.org/10.7150/jca.25155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Engebraaten O, Vollan HKM, Borresen-Dale AL (2013) Triple-negative breast cancer and the need for new therapeutic targets. Am J Pathol 183(4):1064–1074. https://doi.org/10.1016/j.ajpath.2013.05.033

    Article  CAS  PubMed  Google Scholar 

  34. Plasilova ML, Hayse B, Killelea BK, Horowitz NR, Chagpar AB, Lannin DR (2016) Features of triple-negative breast cancer: analysis of 38,813 cases from the national cancer database. Medicine 95(35):e4614. https://doi.org/10.1097/MD.0000000000004614

    Article  PubMed  PubMed Central  Google Scholar 

  35. Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua SA, Savage MI, Osborne CK, Hilsenbeck SG, Chang JC, Mills GB, Lau CC, Brown PH (2015) Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 21(7):1688–1698. https://doi.org/10.1158/1078-0432.CCR-14-0432

    Article  CAS  Google Scholar 

  36. Kim S, Moon BI, Lim W, Park S, Cho MS, Sung SH (2018) Feasibility of classification of triple negative breast Cancer by Immunohistochemical surrogate markers. Clinical breast cancer 18(5):e1123–e1132. https://doi.org/10.1016/j.clbc.2018.03.012

    Article  CAS  PubMed  Google Scholar 

  37. Le Du F, Eckhardt BL, Lim B, Litton JK, Moulder S, Meric-Bernstam F, Gonzalez-Angulo AM, Ueno NT (2015) Is the future of personalized therapy in triple-negative breast cancer based on molecular subtype? Oncotarget 6 (15):12890-12908. Doi:https://doi.org/10.18632/oncotarget.3849

  38. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121(7):2750–2767. https://doi.org/10.1172/JCI45014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yam C, Mani SA, Moulder SL (2017) Targeting the molecular subtypes of triple negative breast Cancer: understanding the diversity to Progress the field. Oncologist 22(9):1086–1093. https://doi.org/10.1634/theoncologist.2017-0095

    Article  PubMed  PubMed Central  Google Scholar 

  40. Perou CM (2011) Molecular stratification of triple-negative breast cancers. Oncologist 16(Suppl 1):61–70. https://doi.org/10.1634/theoncologist.2011-S1-61

    Article  PubMed  Google Scholar 

  41. Lehmann BD, Jovanovic B, Chen X, Estrada MV, Johnson KN, Shyr Y, Moses HL, Sanders ME, Pietenpol JA (2016) Refinement of triple-negative breast Cancer molecular subtypes: implications for Neoadjuvant chemotherapy selection. PLoS One 11(6):e0157368. https://doi.org/10.1371/journal.pone.0157368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Leon-Ferre RA, Polley MY, Liu H, Gilbert JA, Cafourek V, Hillman DW, Elkhanany A, Akinhanmi M, Lilyquist J, Thomas A, Negron V, Boughey JC, Liu MC, Ingle JN, Kalari KR, Couch FJ, Visscher DW, Goetz MP (2018) Impact of histopathology, tumor-infiltrating lymphocytes, and adjuvant chemotherapy on prognosis of triple-negative breast cancer. Breast Cancer Res Treat 167(1):89–99. https://doi.org/10.1007/s10549-017-4499-7

    Article  CAS  PubMed  Google Scholar 

  43. Loi S, Drubay D, Adams S, Pruneri G, Francis PA, Lacroix-Triki M, Joensuu H, Dieci MV, Badve S, Demaria S, Gray R, Munzone E, Lemonnier J, Sotiriou C, Piccart MJ, Kellokumpu-Lehtinen PL, Vingiani A, Gray K, Andre F, Denkert C, Salgado R, Michiels S (2019) Tumor-infiltrating lymphocytes and prognosis: a pooled individual patient analysis of early-stage triple-negative breast cancers. Journal of clinical oncology : official journal of the American Society of Clinical Oncology:JCO1801010. doi:https://doi.org/10.1200/JCO.18.01010

  44. Matsumoto H, Thike AA, Li H, Yeong J, Koo SL, Dent RA, Tan PH, Iqbal J (2016) Increased CD4 and CD8-positive T cell infiltrate signifies good prognosis in a subset of triple-negative breast cancer. Breast Cancer Res Treat 156(2):237–247. https://doi.org/10.1007/s10549-016-3743-x

    Article  CAS  PubMed  Google Scholar 

  45. Baker K, Lachapelle J, Zlobec I, Bismar TA, Terracciano L, Foulkes WD (2011) Prognostic significance of CD8+ T lymphocytes in breast cancer depends upon both oestrogen receptor status and histological grade. Histopathology 58(7):1107–1116. https://doi.org/10.1111/j.1365-2559.2011.03846.x

    Article  PubMed  Google Scholar 

  46. Liu S, Lachapelle J, Leung S, Gao D, Foulkes WD, Nielsen TO (2012) CD8+ lymphocyte infiltration is an independent favorable prognostic indicator in basal-like breast cancer. Breast cancer research : BCR 14(2):R48. https://doi.org/10.1186/bcr3148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mao Y, Qu Q, Chen X, Huang O, Wu J, Shen K (2016) The prognostic value of tumor-infiltrating lymphocytes in breast Cancer: a systematic review and meta-analysis. PLoS One 11(4):e0152500. https://doi.org/10.1371/journal.pone.0152500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen Z, Chen X, Zhou E, Chen G, Qian K, Wu X, Miao X, Tang Z (2014) Intratumoral CD8(+) cytotoxic lymphocyte is a favorable prognostic marker in node-negative breast cancer. PLoS One 9(4):e95475. https://doi.org/10.1371/journal.pone.0095475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mahmoud SM, Paish EC, Powe DG, Macmillan RD, Grainge MJ, Lee AH, Ellis IO, Green AR (2011) Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 29(15):1949–1955. https://doi.org/10.1200/JCO.2010.30.5037

    Article  Google Scholar 

  50. Bates GJ, Fox SB, Han C, Leek RD, Garcia JF, Harris AL, Banham AH (2006) Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 24(34):5373–5380. https://doi.org/10.1200/JCO.2006.05.9584

    Article  Google Scholar 

  51. Miyashita M, Sasano H, Tamaki K, Hirakawa H, Takahashi Y, Nakagawa S, Watanabe G, Tada H, Suzuki A, Ohuchi N, Ishida T (2015) Prognostic significance of tumor-infiltrating CD8+ and FOXP3+ lymphocytes in residual tumors and alterations in these parameters after neoadjuvant chemotherapy in triple-negative breast cancer: a retrospective multicenter study. Breast cancer research : BCR 17:124. https://doi.org/10.1186/s13058-015-0632-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Takenaka M, Seki N, Toh U, Hattori S, Kawahara A, Yamaguchi T, Koura K, Takahashi R, Otsuka H, Takahashi H, Iwakuma N, Nakagawa S, Fujii T, Sasada T, Yamaguchi R, Yano H, Shirouzu K, Kage M (2013) FOXP3 expression in tumor cells and tumor-infiltrating lymphocytes is associated with breast cancer prognosis. Molecular and clinical oncology 1(4):625–632. https://doi.org/10.3892/mco.2013.107

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lee S, Cho EY, Park YH, Ahn JS, Im YH (2013) Prognostic impact of FOXP3 expression in triple-negative breast cancer. Acta Oncol 52(1):73–81. https://doi.org/10.3109/0284186X.2012.731520

    Article  CAS  PubMed  Google Scholar 

  54. Papaioannou E, Sakellakis M, Melachrinou M, Tzoracoleftherakis E, Kalofonos H, Kourea E (2019) A standardized evaluation method for FOXP3+ Tregs and CD8+ T-cells in breast carcinoma: association with breast carcinoma subtypes, stage and prognosis. Anticancer research 39 (3):1217-1232. Doi:https://doi.org/10.21873/anticanres.13232

  55. Zhang L, Wang XI, Ding J, Sun Q, Zhang S (2019) The predictive and prognostic value of Foxp3+/CD25+ regulatory T cells and PD-L1 expression in triple negative breast cancer. Ann Diagn Pathol 40:143–151. https://doi.org/10.1016/j.anndiagpath.2019.04.004

    Article  PubMed  Google Scholar 

  56. Ali HR, Provenzano E, Dawson SJ, Blows FM, Liu B, Shah M, Earl HM, Poole CJ, Hiller L, Dunn JA, Bowden SJ, Twelves C, Bartlett JM, Mahmoud SM, Rakha E, Ellis IO, Liu S, Gao D, Nielsen TO, Pharoah PD, Caldas C (2014) Association between CD8+ T-cell infiltration and breast cancer survival in 12,439 patients. Annals of oncology : official journal of the European Society for Medical Oncology 25(8):1536–1543. https://doi.org/10.1093/annonc/mdu191

    Article  CAS  Google Scholar 

  57. Mahmoud SM, Paish EC, Powe DG, Macmillan RD, Lee AH, Ellis IO, Green AR (2011) An evaluation of the clinical significance of FOXP3+ infiltrating cells in human breast cancer. Breast Cancer Res Treat 127(1):99–108. https://doi.org/10.1007/s10549-010-0987-8

    Article  CAS  PubMed  Google Scholar 

  58. Ladoire S, Arnould L, Mignot G, Coudert B, Rebe C, Chalmin F, Vincent J, Bruchard M, Chauffert B, Martin F, Fumoleau P, Ghiringhelli F (2011) Presence of Foxp3 expression in tumor cells predicts better survival in HER2-overexpressing breast cancer patients treated with neoadjuvant chemotherapy. Breast Cancer Res Treat 125(1):65–72. https://doi.org/10.1007/s10549-010-0831-1

    Article  CAS  PubMed  Google Scholar 

  59. Merlo A, Casalini P, Carcangiu ML, Malventano C, Triulzi T, Menard S, Tagliabue E, Balsari A (2009) FOXP3 expression and overall survival in breast cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 27(11):1746–1752. https://doi.org/10.1200/JCO.2008.17.9036

    Article  CAS  Google Scholar 

  60. DeNardo DG, Barreto JB, Andreu P, Vasquez L, Tawfik D, Kolhatkar N, Coussens LM (2009) CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16(2):91–102. https://doi.org/10.1016/j.ccr.2009.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Su S, Liu Q, Chen J, Chen J, Chen F, He C, Huang D, Wu W, Lin L, Huang W, Zhang J, Cui X, Zheng F, Li H, Yao H, Su F, Song E (2014) A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell 25(5):605–620. https://doi.org/10.1016/j.ccr.2014.03.021

    Article  CAS  PubMed  Google Scholar 

  62. Medrek C, Ponten F, Jirstrom K, Leandersson K (2012) The presence of tumor associated macrophages in tumor stroma as a prognostic marker for breast cancer patients. BMC Cancer 12:306. https://doi.org/10.1186/1471-2407-12-306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhao X, Qu J, Sun Y, Wang J, Liu X, Wang F, Zhang H, Wang W, Ma X, Gao X, Zhang S (2017) Prognostic significance of tumor-associated macrophages in breast cancer: a meta-analysis of the literature. Oncotarget 8 (18):30576-30586. Doi:https://doi.org/10.18632/oncotarget.15736

  64. Bellucci R, Martin A, Bommarito D, Wang K, Hansen SH, Freeman GJ, Ritz J (2015) Interferon-gamma-induced activation of JAK1 and JAK2 suppresses tumor cell susceptibility to NK cells through upregulation of PD-L1 expression. Oncoimmunology 4(6):e1008824. https://doi.org/10.1080/2162402X.2015.1008824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sanmamed MF, Chen L (2014) Inducible expression of B7-H1 (PD-L1) and its selective role in tumor site immune modulation. Cancer J 20(4):256–261. https://doi.org/10.1097/PPO.0000000000000061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Botti G, Collina F, Scognamiglio G, Rao F, Peluso V, De Cecio R, Piezzo M, Landi G, De Laurentiis M, Cantile M, Di Bonito M (2017) Programmed death ligand 1 (PD-L1) tumor expression is associated with a better prognosis and diabetic disease in triple negative breast Cancer patients. Int J Mol Sci 18(2). https://doi.org/10.3390/ijms18020459

  67. Brockhoff G, Seitz S, Weber F, Zeman F, Klinkhammer-Schalke M, Ortmann O, Wege AK (2018) The presence of PD-1 positive tumor infiltrating lymphocytes in triple negative breast cancers is associated with a favorable outcome of disease. Oncotarget 9 (5):6201-6212. Doi:https://doi.org/10.18632/oncotarget.23717

  68. Sabatier R, Finetti P, Mamessier E, Adelaide J, Chaffanet M, Ali HR, Viens P, Caldas C, Birnbaum D, Bertucci F (2015) Prognostic and predictive value of PDL1 expression in breast cancer. Oncotarget 6 (7):5449-5464. Doi:https://doi.org/10.18632/oncotarget.3216

  69. Uhercik M, Sanders AJ, Owen S, Davies EL, Sharma AK, Jiang WG, Mokbel K (2017) Clinical significance of PD1 and PDL1 in human breast Cancer. Anticancer research 37 (8):4249-4254. Doi:https://doi.org/10.21873/anticanres.11817

  70. Wang ZQ, Milne K, Derocher H, Webb JR, Nelson BH, Watson PH (2017) PD-L1 and intratumoral immune response in breast cancer. Oncotarget 8 (31):51641-51651. Doi:https://doi.org/10.18632/oncotarget.18305

  71. Wu Z, Zhang L, Peng J, Xu S, Zhou L, Lin Y, Wang Y, Lu J, Yin W, Lu J (2019) Predictive and prognostic value of PDL1 protein expression in breast cancer patients in neoadjuvant setting. Cancer biology & therapy 20(6):941–947. https://doi.org/10.1080/15384047.2019.1583533

    Article  CAS  Google Scholar 

  72. Li Z, Dong P, Ren M, Song Y, Qian X, Yang Y, Li S, Zhang X, Liu F (2016) PD-L1 expression is associated with tumor FOXP3(+) regulatory T-cell infiltration of breast Cancer and poor prognosis of patient. J Cancer 7(7):784–793. https://doi.org/10.7150/jca.14549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Muenst S, Schaerli AR, Gao F, Daster S, Trella E, Droeser RA, Muraro MG, Zajac P, Zanetti R, Gillanders WE, Weber WP, Soysal SD (2014) Expression of programmed death ligand 1 (PD-L1) is associated with poor prognosis in human breast cancer. Breast Cancer Res Treat 146(1):15–24. https://doi.org/10.1007/s10549-014-2988-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jiang C, Cao S, Li N, Jiang L, Sun T (2019) PD-1 and PD-L1 correlated gene expression profiles and their association with clinical outcomes of breast cancer. Cancer Cell Int 19:233. https://doi.org/10.1186/s12935-019-0955-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gaule P, Smithy JW, Toki M, Rehman J, Patell-Socha F, Cougot D, Collin P, Morrill P, Neumeister V, Rimm DL (2017) A quantitative comparison of antibodies to programmed cell death 1 ligand 1. JAMA oncology 3(2):256–259. https://doi.org/10.1001/jamaoncol.2016.3015

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zajac M, Scott M, Ratcliffe M, Scorer P, Barker C, Al-Masri H, Rebelatto MC, Walker J (2019) Concordance among four commercially available, validated programmed cell death ligand-1 assays in urothelial carcinoma. Diagn Pathol 14(1):99. https://doi.org/10.1186/s13000-019-0873-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Buttner R, Gosney JR, Skov BG, Adam J, Motoi N, Bloom KJ, Dietel M, Longshore JW, Lopez-Rios F, Penault-Llorca F, Viale G, Wotherspoon AC, Kerr KM, Tsao MS (2017) Programmed death-ligand 1 immunohistochemistry testing: a review of analytical assays and clinical implementation in non-small-cell lung Cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 35(34):3867–3876. https://doi.org/10.1200/JCO.2017.74.7642

    Article  Google Scholar 

  78. Karnik T, Kimler BF, Fan F, Tawfik O (2018) PD-L1 in breast cancer: comparative analysis of 3 different antibodies. Hum Pathol 72:28–34. https://doi.org/10.1016/j.humpath.2017.08.010

    Article  CAS  PubMed  Google Scholar 

  79. Ghebeh H, Barhoush E, Tulbah A, Elkum N, Al-Tweigeri T, Dermime S (2008) FOXP3+ Tregs and B7-H1+/PD-1+ T lymphocytes co-infiltrate the tumor tissues of high-risk breast cancer patients: implication for immunotherapy. BMC Cancer 8:57. https://doi.org/10.1186/1471-2407-8-57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Elif Ugurlu and Mr. Mucahit Ozkelle for technical support during sectioning and performing immunohistochemistry.

Funding

This study was funded by the Scientific Research and Projects Board of the Marmara University, Istanbul, Turkey (Grant number: SAG-C-TUP-131217-0659).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed and the first draft of the manuscript was written by Hulya Sahin Ozkan. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. The role of the each author in this paper as follows:

Conceptualization: Hulya Sahin Ozkan, Handan Kaya.

Methodology: Hulya Sahin Ozkan.

Formal analysis and investigation: Hulya Sahin Ozkan.

Data collection - histopathological and immunohistochemical: Hulya Sahin Ozkan.

Data collection - clinical: Mustafa Umit Ugurlu, Perran Fulden Yumuk.

Writing - original draft preparation: Hulya Sahin Ozkan.

Writing - review and editing: Mustafa Umit Ugurlu, Perran Fulden Yumuk, Handan Kaya.

Funding acquisition: Hulya Sahin Ozkan, Handan Kaya.

Resources: Hulya Sahin Ozkan, Handan Kaya.

Supervision: Handan Kaya.

Corresponding author

Correspondence to Hulya Sahin Ozkan.

Ethics declarations

Conflicts of Interest/Competing Interests

The authors declare that they have no conflicts of interest and/or competing interests.

Ethics Approval

The study protocols were approved by the Ethical Board of the Marmara University Medical School, Istanbul, Turkey (Protocol number: 09.2017.665).

Consent to Participate

N/A

Consent for Publication

N/A

Code Availability

R code of the statistical analyses is available from the corresponding author on reasonable request.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahin Ozkan, H., Ugurlu, M.U., Yumuk, P.F. et al. Prognostic Role of Immune Markers in Triple Negative Breast Carcinoma. Pathol. Oncol. Res. 26, 2733–2745 (2020). https://doi.org/10.1007/s12253-020-00874-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-020-00874-4

Keywords

Navigation