Skip to main content

Advertisement

Log in

Supervised Multidimensional Scaling and its Application in MRI-Based Individual Age Predictions

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

It has been a popular trend to decode individuals’ demographic and cognitive variables based on MRI. Features extracted from MRI data are usually of high dimensionality, and dimensionality reduction (DR) is an effective way to deal with these high-dimensional features. Despite many supervised DR techniques for classification purposes, there is still a lack of supervised DR techniques for regression purposes. In this study, we advanced a novel supervised DR technique for regression purposes, namely, supervised multidimensional scaling (SMDS). The implementation of SMDS includes two steps: (1) evaluating pairwise distances among entities based on their labels and constructing a new space through a distance-preserving projection; (2) establishing an explicit linear relationship between the feature space and the new space. Based on this linear relationship, DR for test entities can be performed. We evaluated the performance of SMDS first on a synthetic dataset, and the results indicate that (1) SMDS is relatively robust to Gaussian noise existing in the features and labels; (2) the dimensionality of the new space exerts negligible influences upon SMDS; and (3) when the sample size is small, the performance of SMDS deteriorates with the increase of feature dimension. When applied to features extracted from resting state fMRI data for individual age predictions, SMDS was observed to outperform classic DR techniques, including principal component analysis, locally linear embedding and multidimensional scaling (MDS). Hopefully, SMDS can be widely used in studies on MRI-based predictions. Furthermore, novel supervised DR techniques for regression purposes can easily be developed by replacing MDS with other nonlinear DR techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Acha, B., Serrano, C., Fondon, I., & Gomez-Cia, T. (2013). Burn depth analysis using multidimensional scaling applied to psychophysical experiment data. IEEE Trans Med Imaging, 32(6), 1111–1120.

    Article  Google Scholar 

  • Biswas, S., Bowyer, K.W., Flynn, P.J. (2010). Multidimensional scaling for matching low-resolution facial images. 2010 Fourth IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS), 1–6.

  • Biswas, S., Bowyer, K. W., & Flynn, P. J. (2012). Multidimensional scaling for matching low-resolution face images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(10), 2019–2030.

    Article  Google Scholar 

  • Cao, P., Liu, X., Yang, J., Zhao, D., Huang, M., Zhang, J., & Zaiane, O. (2017). Nonlinearity-aware based dimensionality reduction and over-sampling for AD/MCI classification from MRI measures. Computers in Biology and Medicine, 91(1), 21–37.

    Article  Google Scholar 

  • Chen, H. T., Chang, H. W., & Liu, T. L. (2005). Local discriminant embedding and its variants. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2, 846–853.

    Article  Google Scholar 

  • Cox, T. F., & Cox, M. A. A. (2001). Multidimensional scaling. Journal of the Royal Statistical Society, 46(2), 1050–1057.

    Google Scholar 

  • Dosenbach, N. U., Nardos, B., Cohen, A. L., Fair, D. A., Power, J. D., Church, J. A., et al. (2010). Prediction of individual brain maturity using fMRI. Science, 329(5997), 1358–1361.

    Article  CAS  Google Scholar 

  • Forero, P. A., & Giannakis, G. B. (2012). Sparsity-exploiting robust multidimensional scaling. IEEE Transactions on Signal Processing, 60(8), 4118–4134.

    Article  Google Scholar 

  • Franke, K., Luders, E., May, A., Wilke, M., & Gaser, C. (2012). Brain maturation: Predicting individual BrainAGE in children and adolescents using structural MRI. NeuroImage, 63(3), 1305–1312.

    Article  Google Scholar 

  • Geng, X., Zhan, D. C., & Zhou, Z. H. (2005). Supervised nonlinear dimensionality reduction for visualization and classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 35(6), 1098–1107.

    Article  Google Scholar 

  • Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., & Smith, S. M. (2012). FSL. NeuroImage, 62(2), 782–790.

    Article  Google Scholar 

  • Kokiopoulou, E., & Saad, Y. (2007). Orthogonal neighborhood preserving projections: A projection-based dimensionality reduction technique. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(12), 2143–2156.

    Article  Google Scholar 

  • Liu, M., Zhang, D., & Shen, D. (2016). Relationship induced multi-template learning for diagnosis of Alzheimer’s disease and mild cognitive impairment. IEEE Transactions on Medical Imaging, 35(6), 1463–1474.

    Article  Google Scholar 

  • Liu, X., Cao, P., Wang, J., Kong, J., & Zhao, D. (2019). Fused group lasso regularized multi-task feature learning and its application to the cognitive performance prediction of Alzheimer’s disease. Neuroinformatics, 17(2), 271–294.

    Article  Google Scholar 

  • Maaten, L. V. D., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9(11), 2579–2605.

    Google Scholar 

  • Xia, M., Wang, J., & He, Y. (2013). BrainNet viewer: A network visualization tool for human brain connectomics. PLoS One, 8(7), e68910.

    Article  CAS  Google Scholar 

  • MouraO-Miranda, J., Bokde, A. L. W., Born, C., Hampel, H., & Stetter, M. (2005). Classifying brain states and determining the discriminating activation patterns: Support vector machine on functional MRI data. NeuroImage, 28(4), 980–995.

    Article  Google Scholar 

  • Mwangi, B., Hasan, K. M., & Soares, J. C. (2013). Prediction of individual subject’s age across the human lifespan using diffusion tensor imaging: A machine learning approach. NeuroImage, 75(1), 58–67.

    Article  Google Scholar 

  • Mwangi, B., Tian, T. S., & Soares, J. C. (2014). A review of feature reduction techniques in neuroimaging. Neuroinformatics, 12(2), 229–244.

    Article  Google Scholar 

  • Nooner, K. B., Colcombe, S. J., Tobe, R. H., Mennes, M., Benedict, M. M., Moreno, A. L., et al. (2012). The NKI Rockland sample: A model for accelerating the pace of discovery science in psychiatry. Frontiers in Neurosciences, 6, 152. https://doi.org/10.3389/fnins.2012.00152.

  • Pereira, F., Mitchell, T., & Botvinick, M. (2009). Machine learning classifiers and fMRI: A tutorial overview. NeuroImage, 45(1), S199–S209.

    Article  Google Scholar 

  • Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2014). Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage, 84, 320–341.

    Article  Google Scholar 

  • Qin, J., Chen, S. G., Hu, D., Zeng, L. L., & Shen, H. (2015). Predicting individual brain maturity using dynamic functional connectivity. Neuroscience, 9(10), 418.

    Google Scholar 

  • Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500), 2323–2326.

    Article  CAS  Google Scholar 

  • Shine, J. M., Koyejo, O., & Poldrack, R. A. (2016). Temporal metastates are associated with differential patterns of time-resolved connectivity, network topology, and attention. Proceedings of the National Academy of Sciences, 113(35), 9888–9891.

    Article  CAS  Google Scholar 

  • Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23(Suppl. 1), S208–S219.

    Article  Google Scholar 

  • Tenenbaum, J., De-Silva, V., & Langford, J. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500), 2319–2323.

    Article  CAS  Google Scholar 

  • Tian, L., Ma, L., & Wang, L. (2016). Alterations of functional connectivities from early to middle adulthood: Clues from multivariate pattern analysis of resting-state fMRI data. NeuroImage, 129, 389–400.

    Article  Google Scholar 

  • Yoo, K., Rosenberg, M. D., Hsu, W. T., Zhang, S., Li, C. R., Scheinost, D., et al. (2018). Connectome-based predictive modeling of attention: Comparing different functional connectivity features and prediction methods across datasets. NeuroImage, 167, 11–22.

    Article  Google Scholar 

  • Zhang, C., Dougherty, C. C., Baum, S. A., White, T., & Michael, A. M. (2018). Functional connectivity predicts gender: Evidence for gender differences in resting brain connectivity. Hum Brain Mapping, 39(4), 1765–1776.

    Article  Google Scholar 

  • Zhang, S. Q. (2009). Enhanced supervised locally linear embedding. Pattern Recognition Letters, 30(13), 1208–1218.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61773048 and 61272356) and National Key R&D Project (2017YFC1703506).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixia Tian.

Ethics declarations

Conflict of Interests

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1047 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Chen, C. & Tian, L. Supervised Multidimensional Scaling and its Application in MRI-Based Individual Age Predictions. Neuroinform 19, 219–231 (2021). https://doi.org/10.1007/s12021-020-09476-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-020-09476-6

Keywords

Navigation