Skip to main content
Log in

Theoretical Investigation of Nonequilibrium Spin Transport Through a Triple Site Quantum Wire System

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

A triple lattice site quantum wire (QW) system is chosen to investigate nonequilibrium spin transport properties theoretically. We calculate the initial charge of the QW from the exactly derived ground state. Based on the Keldysh formalism, we describe theoretical methods and derive analytical formulas for nonequilibrium spin transport of the QW systems within Hartree-Fock approximation when Coulomb interactions are present. We report the numerical results of the nonequilibrium differential spin conductance, spin transport current, and electronic charge distribution of the triple site QW system. When only including Coulomb repulsions between the spin-up and spin-down electrons, the series of peaks and valleys in the conductance characteristics appears due to the spin resonant tunneling and spin blockade. With the increase of Coulomb interaction energy U, the conductance peaks start to split into two corresponding to the spin-up and spin-down conductance. Near the resonant points, the spin current polarization and the in-site spin charge polarizations take place. When additionally including spin-spin interactions, the differences between the spin-up and spin-down conductance characteristics are reduced, implying that the spin split is relaxed by spin-spin interactions. The spin splits, the spin current, and spin charge polarizations are relaxed at high temperatures due to the thermal fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Žutić, I., Fabian, J., Das Sarma, S.: Rev. Mod. Phys. 76, 323 (2004)

    Article  ADS  Google Scholar 

  2. Baltz, V., Manchon, A., Tsoi, M., Moriyama, T., Ono, T., Tserkovnyak, Y.: Rev. Mod. Phys. 90, 015005 (2018)

    Article  ADS  Google Scholar 

  3. Baibich, M.N., Broto, J.M., Fert, A., Nguyen Van Dau, F., Petroff, F., Eitenne, P., Creuzet, G., Friederich, A., Chazelas, J.: Phys. Rev. Lett. 61, 2472 (1988)

    Article  ADS  Google Scholar 

  4. Grünberg, P., Schreiber, R., Pang, Y., Brodsky, M.B., Sowers, H.: Phys. Rev. Lett. 57, 2442 (1986)

    Article  ADS  Google Scholar 

  5. Li, J., Cheng, C., Paiva, T., Lin, H.Q., Mondaini, R.: Phys. Rev. Lett. 121, 020403 (2018)

    Article  ADS  Google Scholar 

  6. Julliere, M.: Phys. Lett. 54A, 225 (1975)

    Article  ADS  Google Scholar 

  7. Miyazaki, T., Tezuka, N.: J. Magn. Magn. Mater. 139, L231 (1995)

    Article  ADS  Google Scholar 

  8. Moodera, J.S., et al.: Phys. Rev. Lett. 74, 3273 (1995)

    Article  ADS  Google Scholar 

  9. Roy, S., Soori, A., Das, S.: Phys. Rev. B. 91, 041109 (R) 3, 2015

  10. Datta, S., Das, B.: Appl. Phys. Lett. 56, 665 (1990)

    Article  ADS  Google Scholar 

  11. Ono, K., Giavaras, G., Tanamoto, T., Ohguro, T., Hu, X., Nori, F.: Phys. Rev. Lett. 119, 156802 (2017)

    Article  ADS  Google Scholar 

  12. Sato, S., Ichihara, M., Tanaka, M., Nakane, R.: Phys. Rev. B. 99, 165301 (2019)

    Article  ADS  Google Scholar 

  13. Deutsch, D., Jozsa, R.: Proc. Math. Phys. Sci. 439, 553 (1992)

    Google Scholar 

  14. Das Sarma, S., Fabian, J., Hu, X., Žutić, I.: Solid State Commun. 119, 207–215 (2001)

    Article  ADS  Google Scholar 

  15. M. A. Nielsen, and I. L. Chuang: Quantum computation and quantum information (Cambridge University, Cambridege/New York, 2000)

  16. Burkard, G., Engel, H.A., Loss, D.: Fortschr. Phys. 48, 965 (2000)

    Article  Google Scholar 

  17. Popescu, A.E., Ionicioiu, R.: Phys. Rev. B. 69, 245422 (2004)

    Article  ADS  Google Scholar 

  18. Földi, P., Molnár, B., Benedict, M.G., Peeters, F.M.: Phys. Rev. B. 71, 033309 (2005)

    Article  ADS  Google Scholar 

  19. Ono, K., Shevchenko, S.N., Mori, T., Moriyama, S., Nori, F.: Phys. Rev. Lett. 122, 207703 (2019)

    Article  ADS  Google Scholar 

  20. Calderon-Vargas, F.A., Barron, G.S., Deng, X.-H., Sigillito, A.J., Barnes, E., Sophia, E.: Economou: Phys. Rev. B. 100, 035304 (2019)

    ADS  Google Scholar 

  21. Loss, D., DiVincenzo, D.P.: Phys. Rev. A. 57, 120 (1998)

    Article  ADS  Google Scholar 

  22. Kane, B.E.: Nature. 393, 133 (1998)

    Article  ADS  Google Scholar 

  23. Nonoyama, S., Oguri, A., Asano, Y., Maekawa, S.: Phys. Rev. B. 50, 2667 (1994)

    Article  ADS  Google Scholar 

  24. Nonoyama, S., Oguri, A.: J. Phys. Soc. Jpn. 64, 3871 (1995)

    Article  ADS  Google Scholar 

  25. Beenakker, C.W.J.: Phys. Rev. B. 73, 201304(R) (2006)

    Article  ADS  Google Scholar 

  26. Giavaras, G., Jefferson, J.H., Fearn, M., Lambert, C.J.: Phys. Rev. B. 75, 085302 (2007)

    Article  ADS  Google Scholar 

  27. Schwinger, J.: J. Math. Phys. 2, 407 (1961)

    Article  ADS  Google Scholar 

  28. Keldysh, L.V.: Sov. Phys. JETP. 20, 1018 (1965)

    Google Scholar 

  29. Caroli, C., Combescot, R., Nozieres, P., Saint-James, D.: J. Phys. C. 4, 916 (1971)

    Article  ADS  Google Scholar 

  30. Hershfield, S., Davies, J.H., Wilkins, J.W.: Phys. Rev. B. 46, 7046 (1992)

    Article  ADS  Google Scholar 

  31. Meir, Y., Wingreen, N.S., Lee, P.A.: Phys. Rev. Lett. 66, 3048 (1991)

    Article  ADS  Google Scholar 

  32. S. Datta: Electronic transport in mesoscopic systems (Cambridge University Press, 1995)

  33. Ajisaka, S., Barra, F.: Phys. Rev. B. 87, 195114 (2013)

    Article  ADS  Google Scholar 

  34. Kondo, J.: Prog. Theor. Phys. 32, 37 (1964)

    Article  ADS  Google Scholar 

  35. L. D. Landau and E. M. Lifshitz: (Course of theoretical physics) Statistical physics Part 2 (Vol. 9), Physical Kinetics (Vol. 10) (Pergamon Press, New York, 1965)

  36. Meir, Y., Wingreen, N.S.: Phys. Rev. Lett. 68, 2512 (1992)

    Article  ADS  Google Scholar 

  37. Goldhaber-Gordon, D., Shtrikman, H., Mahalu, D., AbuschMagder, D., Meirav, U., Kastner, M.A.: Nature (London). 391, 156 (1998)

    Article  ADS  Google Scholar 

  38. van der Wiel, W.G., De Franceschi, S., Fujisawa, T., Elzerman, J.M., Tarucha, S., Kouwenhoven, L.P.: Science. 289, 2105 (2000)

    Article  ADS  Google Scholar 

  39. Zheng, Y.D., Mizuta, H., Oda, S.: Jpn. J. Appl. Phys. Part 1. 47(1A), 371–382 (2008)

    Article  Google Scholar 

  40. Zheng, Y.D., Mizuta, H., Oda, S.: The 15th International Conference on Nonequilibrium Carrier Dynamics in Semiconductors (HCIS-15). MoP-8, Tokyo (2007)

    Google Scholar 

Download references

Funding

This research was supported in part by Grants-in-Aid for the basic research and development of Mitsubishi Electric (China) Company Limited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangdong Zheng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y. Theoretical Investigation of Nonequilibrium Spin Transport Through a Triple Site Quantum Wire System. J Supercond Nov Magn 33, 3469–3485 (2020). https://doi.org/10.1007/s10948-020-05603-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05603-1

Keywords

PACS numbers

Navigation