Skip to main content
Log in

Characterization of the hydraulic conductivity of glacial till aquitards

Caractérisation de la conductivité hydraulique des aquitards morainiques

Caracterización de la conductividad hidráulica de los acuitardos de los tills glaciares

冰碛隔水层导水率的表征

Caracterização da condutividade hidráulica de aquitardos de tilito glacial

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Pleistocene-aged glacial sediments are found in many parts the Northern Hemisphere and are often composed of clay-rich tills which form aquitards that can control drainage and influence groundwater movement and contaminant transport. Site-scale investigations have characterized the hydraulic properties of till aquitards; however, the hydraulic conductivity of these units has not been quantitatively described at a regional scale of tens of kilometers. This study constrains regionally representative hydraulic conductivity estimates and characterizes the hydrogeological properties of Pleistocene-aged till aquitards from data collected at 15 sites compiled from 21 studies. The data quantify the scale dependence of hydraulic conductivity measurements in till aquitards and further define the relationship between hydraulic conductivity and depth. Data from centimeter-scale laboratory tests remained generally constant with depth, with a geometric mean hydraulic conductivity of 7.0 × 10−11 m/s and a standard deviation of 0.4 orders of magnitude, while the meter-scale in-situ tests had a geometric mean of 4.9 × 10−9 m/s and a standard deviation of 1.0 orders of magnitude at depths less than 10 m, and 3.7 × 10−11 m/s and 0.2 order of magnitude at depths greater than 23 m. The results support the existence of a shallow fractured zone of higher hydraulic conductivity and a deeper zone characterized by matrix permeability. The observed data variability occurred primarily at the site scale, while the central tendency and variability of the data were consistent between sites separated by hundreds of kilometers suggesting that statistically derived, depth-defined regional hydraulic conductivity estimates can be meaningful.

Résumé

Les sédiments glaciaires d’âge pléistocène sont présents dans de nombreuses régions de l’hémisphère nord et sont souvent constitués de moraines riches en argile qui forment des aquitards pouvant contrôler le drainage et influencer le mouvement de l’eau souterraine et le transport de contaminants. Des études à l’échelle du site ont caractérisé les propriétés hydrauliques des aquitards morainiques; cependant, la conductivité hydraulique de ces unités n’a pas été décrite quantitativement à une échelle régionale de dizaines de kilomètres. Cette étude s’astreint à l’estimation de la conductivité hydraulique représentative à l’échelle régionale ainsi qu’à la caractérisation des propriétés hydrogéologiques des aquitards morainiques d’âge pléistocène à partir de données recueillies au niveau de15 sites compilés dans 21 études. Les données permettent de quantifier la dépendance des mesures de conductivité hydrauliques dans les aquitards morainiques vis-à-vis de l’échelle, et de définir en outre la relation entre la conductivité hydraulique et la profondeur. Les valeurs issues de tests effectués en laboratoire à l’échelle centimétrique restent généralement constantes avec la profondeur, avec une moyenne géométrique de la conductivité hydraulique à 7.0 × 10−11 m/s et un écart-type d’un ordre de grandeur de 0.4, tandis que les tests in-situ à l’échelle métrique donnent une moyenne géométrique de 4.9 × 10−9 m/s et un écart-type d’un ordre de grandeur de 1.0 à des profondeurs inférieures à 10 m, et de 3.7 × 10−11 m/s et un ordre de grandeur de 0.2 à des profondeurs supérieures à 23 m. Les résultats soutiennent l’existence d’une zone fracturée peu profonde de conductivité hydraulique plus élevée et d’une zone plus profonde caractérisée par une perméabilité de la matrice. La variabilité des données observées s’est d’abord exprimée à l’échelle du site, alors que la tendance centrale et la variabilité des données sont cohérentes entre les sites distants de centaines de kilomètres, ce qui suggère que les estimations d’une conductivité hydraulique régionale établie statistiquement et définie en profondeur peuvent être significatives.

Resumen

Los sedimentos glaciales de la edad pleistocena se encuentran en muchas partes del hemisferio norte y suelen estar compuestos de arcillas que forman acuitardos que pueden controlar el drenaje e influir en el movimiento de las aguas subterráneas y el transporte de contaminantes. Las investigaciones a escala de sitio han caracterizado las propiedades hidráulicas de los acuitardos de tills; sin embargo, la conductividad hidráulica de estas unidades no se ha descrito cuantitativamente a una escala regional de decenas de kilómetros. Este estudio limita las estimaciones de conductividad hidráulica representativas a nivel regional y caracteriza las propiedades hidrogeológicas de los acuitardos de los tills de la edad del Pleistoceno a partir de los datos recogidos en 15 sitios compilados a partir de 21 estudios. Los datos cuantifican la dependencia de la escala de las mediciones de la conductividad hidráulica en los acuitardos de los tills y definen además la relación entre la conductividad hidráulica y la profundidad. Los datos de las mediciones de laboratorio a escala de centímetros se mantuvieron generalmente constantes con la profundidad, con una conductividad hidráulica media de 7.0 × 10−11 m/s y una desviación estándar de 0.4 órdenes de magnitud, mientras que las pruebas in situ a escala de metro tuvieron una media de 4.9 × 10−9 m/s y una desviación estándar de 1.0 órdenes de magnitud a profundidades inferiores a 10 m, y 3.7 × 10−11 m/s y 0.2 órdenes de magnitud a profundidades superiores a 23 m. Los resultados apoyan la existencia de una zona fracturada poco profunda de mayor conductividad hidráulica y una zona más profunda caracterizada por la permeabilidad de la matriz. La variabilidad de los datos observada se produjo principalmente a escala del sitio, mientras que la tendencia central y la variabilidad de los datos fueron coherentes entre sitios separados por cientos de kilómetros, lo que sugiere que las estimaciones de la conductividad hidráulica regional, derivadas estadísticamente y definidas en función de la profundidad, pueden ser significativas.

摘要

在北半球的许多地方都发现了更新世冰川沉积物,这些沉积物通常由富含粘土的冰碛组成,这些冰碛形成了可以控制排水并影响地下水运动和污染物迁移的隔水层。场地尺度的调查已经表征了冰碛隔水层的水力特性。但是,这些冰碛层的渗透系数尚未在数十公里的区域范围内进行定量描述。本研究选择了区域代表性的渗透系数估计值,并基于21项研究中收集的15个场址数据,表征了更新世至冰碛隔水层的水文地质特征。数据量化了冰碛隔水层渗透系数测量值的尺度依赖性,还进一步确定了渗透系数与深度的关系。厘米级实验室测试的数据通常随深度保持恒定,几何平均渗透系数为7.0 × 10−11 m/s,标准偏差为0.4个数量级,而米级原位测试的几何数据为深度小于10 m时的平均值为4.9 × 10−9 m/s,标准偏差为1.0个数量级,深度大于23 m时的标准偏差为3.7 × 10−11 m/s和0.2数量级。结果发现存在较高渗透系数的浅层破碎区和以基质渗透性为特征的较深区域。观测到的数据变异性主要发生在场地尺度上,而数据的集中趋势和变异性在相距数百公里的场地之间是一致的,这表明统计的以深度定义的区域渗透系数估算值是有意义的。

Resumo

Sedimentos glaciais do Pleistoceno são encontrados em muitas partes do Hemisfério Norte e são frequentemente compostos por tilitos ricos em argila os quais foram aquitardos que podem controlar a drenagem e influenciar o movimento de águas subterrâneas e o transporte de contaminantes. Investigações na escala de campo têm catacterizado as propriedades hidráulicas de aquitardos de tilito; no entanto, a condutividade hidráulica dessas unidades não tem sido descritas quantitativamente em uma escala regional de dezenas de quilômetros. Este estudo restringe estimativas de condutividade hidráulica regionalmente representativas e caracteriza as propriedades hidrogeológicas de aquitardos de tilito do Pleistoceno a partir de dados coletados em 15 locais compilados a partir de 21 estudos. Os dados quantificam a dependência da escala das medidas de condutividade hidráulica em aquitardos de tilito e ainda definem a relação entre a condutividade hidráulica e a profundidade. Dados de testes laboratoriais na escala centimétrica permaneceram genéricamente constantes com a profundidade, com média geométrica da condutividade hidráulica de 7.0 × 10−11 m/s e um desvio padrão de 0.4 ordens de magnitude, enquanto testes em campo na escala de metro tiveram uma média geométrica de 4.9 × 10−9 m/s e um desvio padrão de 1.0 ordens de magnitude em profundidades menores a 10 m, e 3.7 × 10−11 m/s e 0.2 ordens de magnitude em profundidades maiores que 23 m. Os resultados sustentam a existência de uma zona fraturada rasa de alta condutividade hidráulica e uma zona mais profunda caracterizada pela permeabilidade da matriz. A variabilidade dos dados observados ocorre primeiramente em escala local, enquanto a tendência central e a variabilidade dos dados são consistentes entre locais separados por centenas de quilômetros sugerindo que estatisticamente, estimativas de condutividade hidráulica regional definidas de acordo com a profundidade podem ser significativas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allred BJ (2000) Survey of fractured glacial till geotechnical characteristics: hydraulic conductivity, consolidation, and shear strength. Ohio J Sci 100(3/4):63–72

    Google Scholar 

  • American Society for Testing and Materials (ASTM) (1990) ASTM D 5084–90. Standard test method for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter. ASTM, Philadelphia, PA

  • Anochikwa CI, van der Kamp G, Barbour SL (2012) Interpreting porewater pressure changes induced by water table fluctuations and mechanical loading due to soil moisture changes. Can Geotech J 49:357–366. https://doi.org/10.1139/T11-106

    Article  Google Scholar 

  • Barbour SL, Hendry MJ, Wassenaar LI (2012) In situ experiment to determine advective-diffusive controls on solute transport in a clay-rich aquitard. J Contam Hydrol 131:79–88. https://doi.org/10.1016/j.jconhyd.2011.12.002

    Article  Google Scholar 

  • Boldt-Leppin BEJ, Jim HM (2003) Application of harmonic analysis of water levels to determine vertical hydraulic conductivities in clay-rich aquitards. Ground Water 41:514–522. https://doi.org/10.1111/j.1745-6584.2003.tb02385.x

    Article  Google Scholar 

  • Brace WF (1980) Permeability of crystalline and argillaceous rocks. Int J Rock Mech Mining Sci Geomech Abstracts 17(5):241–251. https://doi.org/10.1016/0148-9062(80)90807-4

    Article  Google Scholar 

  • Bradbury K, Muldoon MA (1990) Hydraulic conductivity determinations in unlithified glacial and fluvial materials. Nielsen D, Johnson K (ed) Ground water and vadose zone monitoring. STP 1053, ASTM, Philadelphia, PA, pp 138–151

  • Christiansen EA (1968) Pleistocene stratigraphy of the Saskatoon area, Saskatchewan, Canada. Can J Earth Sci 5:1167–1173. https://doi.org/10.1139/e68-114

    Article  Google Scholar 

  • Christiansen EA (1992) Pleistocene stratigraphy of the Saskatoon area, Saskatchewan, Canada: update. Can J Earth Sci 29:1767–1778. https://doi.org/10.1139/e92-139

    Article  Google Scholar 

  • Christiansen EA, Sauer EK (1998) Geotechnique of Saskatoon and surrounding area, Saskatchewan, Canada. In: Karrow PF, White EO (eds) Urban geology of Canadian cities. Special Paper 42, Geological Association of Canada, St. John’s, NL, pp 117–145

  • Clark MP, Fan Y, Lawrence DM, Adam JC, Bolster D, Gochis DJ et al (2015) Improving the representation of hydrologic processes in earth system models. Water Resour Res 51:5929–2956. https://doi.org/10.1002/2015WR017096

    Article  Google Scholar 

  • Cooper HH, Bredehoeft JD, Papadopoulos IS (1967) Response of a finite-diameter well to an instantaneous charge of water. Water Resour Res 3:263–269

    Article  Google Scholar 

  • Cummings DI, Russell HAJ, Sharpe DR (2012) Buried-valley aquifers in the Canadian prairies: geology, hydrogeology, and origin. Earth Science Sector (ESS) contribution 20120131. Can J Earth Sci 49:987–1004. https://doi.org/10.1139/e2012-041

    Article  Google Scholar 

  • Cuthbert MO, Mackay R, Tellam JH, Thatcher KE (2010) Combining unsaturated and saturated hydraulic observations to understand and estimate groundwater recharge through glacial till. J Hydrol 391:263–276. https://doi.org/10.1016/j.jhydrol.2010.07.025

    Article  Google Scholar 

  • D’Astous AY, Ruland WW, Bruce JRG, Cherry JA, Gillham RW (1989) Fracture effects in the shallow groundwater zone in weathered Sarnia-area clay. Can Geotech J 26:43–56. https://doi.org/10.1139/t89-005

    Article  Google Scholar 

  • Ehlers J, Gibbard PL, Hughes PD (2010) Quaternary glaciations: extent and chronology. Digital maps, Elsevier, Amsterdam. https://booksite.elsevier.com/9780444534477/digital_maps.php. Accessed Jan 8, 2019

  • Fan Y (2015) Groundwater in the Earth’s critical zone: relevance to large-scale patterns and processes. Water Resour Res 51(5):3052–3069. https://doi.org/10.1002/2015WR017037

    Article  Google Scholar 

  • Ferris DM, Ferguson GAG, Potter G (2019) Aggregate hydraulic conductivity data from site investigations in south-central Saskatchewan, Canada. Federated Res Data Repository. https://doi.org/10.20383/101.0140

  • Fetter CW (2001) Applied hydrogeology, 4th edn. Prentice-Hall, Upper Saddle River, NJ

  • Fortin G, van der Kamp G, Cherry JA (1991) Hydrogeology and hydrochemistry of an aquifer-aquitard system within glacial deposits, Saskatchewan, Canada. J Hydrol 126:265–292. https://doi.org/10.1016/0022-1694(91)90160-J

    Article  Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Gelhar L (1993) Stochastic subsurface hydrology. Prentice-Hall, Englewood Cliffs, NJ, pp 390

  • Gleeson T, Smith L, Moosdorf N, Hartmann J, Dürr HH, Manning AH et al (2011) Mapping permeability over the surface of the earth. Geophys Res Lett 38(2). https://doi.org/10.1029/2010GL045565

  • Golder Associates (2010) Potash One: the Legacy Project—environmental impact statement. Golder, Saskatoon, SK

  • Golder Associates (2013a) Vale Kronau Project: environmental impact statement. Golder, Regina, SK

  • Golder Associates (2013b) Milestone Potash Project: environmental impact statement. Golder, Regina, SK

  • Golder Associates (2016) Yancoal Southey Project: environmental impact statement. Golder, Saskatoon, SK

  • Grisak GE, Cherry JA (1975) Hydrologic characteristics and response of fractured till and clay confining a shallow aquifer. Can Geotech J 12:23–43. https://doi.org/10.1139/t75-003

    Article  Google Scholar 

  • Harrington GA, Hendry MJ, Robinson NI (2007) Impact of permeable conduits on solute transport in aquitards: mathematical models and their application. Water Resour Res 43(1–16):W05441. https://doi.org/10.1029/2005WR004144

    Article  Google Scholar 

  • Hayashi M (1996) Surface-subsurface transport cycle of chloride induced by wetland-focussed groundwater recharge. University of Waterloo, Waterloo, ON

    Google Scholar 

  • Hendry MJ (1982) Hydraulic conductivity of a glacial till in Alberta. Ground Water 20:162–169. https://doi.org/10.1111/j.1745-6584.1982.tb02744.x

    Article  Google Scholar 

  • Hendry MJ (1988) Hydrogeology of clay till in a prairie region of Canada. Ground Water 26:607–614. https://doi.org/10.1111/j.1745-6584.1988.tb00794.x

    Article  Google Scholar 

  • Hiscock KM, Tabatabai NM (2011) Aquitard characteristics of clay-rich till deposits in East Anglia, eastern England. J Hydrol 405(3):288–306. https://doi.org/10.1016/j.jhydrol.2011.05.025

    Article  Google Scholar 

  • Houmark-Nielsen M (2010) Extent, age and dynamics of marine isotope stage 3 glaciations in the southwestern Baltic Basin. Boreas 39:343–359. https://doi.org/10.1111/j.1502-3885.2009.00136.x

    Article  Google Scholar 

  • Hvorslev MJ (1951) Time-lag and soil permeability in groundwater observations. Bull no. 36, Waterways Experiment Station, Corps of Engineers, Vicksburg, MS

  • Jenks GF (1967) The data model concept in statistical mapping. Int Yearb Cartogr 7:186–190

    Google Scholar 

  • Jorgensen P, Hoffmann M, Kistrup JP, Bryde C, Bossi R, Villholth K (2002) Preferential flow and pesticide transport in a clay-rich till: field, laboratory, and modeling analysis. Water Resour Res 38. https://doi.org/10.1029/2001WR000494

  • Kehew AE, Teller JT (1994) History of late glacial runoff along the southwestern margin of the Laurentide Ice Sheet. Quat Sci Rev 13:859–877. https://doi.org/10.1016/0277-3791(94)90006-X

    Article  Google Scholar 

  • Keller CK, van der Kamp G, Cherry JA (1986) Fracture permeability and groundwater flow in clayey till near Saskatoon, Saskatchewan. Can Geotech J 23:229–240. https://doi.org/10.1139/t86-032

    Article  Google Scholar 

  • Keller CK, van der Kamp G, Cherry JA (1988) Hydrogeology of two Saskatchewan tills: I fractures, bulk permeability, and spatial variability of downward flow. J Hydrol 101:97–121. https://doi.org/10.1016/0022-1694(88)90030-3

    Article  Google Scholar 

  • Keller CK, van der Kamp G, Cherry JA (1989) A multiscale study of the permeability of a thick clayey till. Water Resour Res 25:2299–2317. https://doi.org/10.1029/WR025i011p02299

    Article  Google Scholar 

  • Kelln CJ (2001) Determination of detailed stable isotope profiles and hydrogeological conditions in a complex clay-rich aquitard, Saskatchewan. University of Saskatchewan, Saskatoon, SK

    Google Scholar 

  • Kessler TC, Klint KES, Nilsson B, Bjerg PL (2012) Characterization of sand lenses embedded in tills. Quat Sci Rev 53:55–71. https://doi.org/10.1016/j.quascirev.2012.08.011

    Article  Google Scholar 

  • Madden TR (1976) Random networks and mixing laws. Geophysics 41(6). https://doi.org/10.1190/1.2035907

  • McKay LD, Cherry JA, Gillham RW (1993) Field experiments in a fractured clay till: 1. hydraulic conductivity and fracture aperture. Water Resour Res 29(4):1149–1162. https://doi.org/10.1029/92WR02592

    Article  Google Scholar 

  • MDH Engineered Solutions Corp (2009) Regional and detailed hydrogeology of the Burr Project. Submitted as part of Burr Potash Project, Environmental impact statement, MDH, Saskatoon, SK

  • MDH Engineered Solutions Corp (2010a) Procedures for regional hydrogeological mapping, M1890–1030109, MDH, Saskatoon, SK

  • MDH Engineered Solutions Corp (2010b) Mosaic Potash Esterhazy Stage 2 Expansion Project: environmental impact statement. MDH, Saskatoon, SK

  • MDH Engineered Solutions Corp (2010c) Detailed geotechnical and hydrogeological investigation for Jansen Project Tailings Management Area. In: Annex 6–15 of Jansen Project environmental impact statement. MDH, Saskatoon, SK

  • MDH Engineered Solutions Corp (2011) Hydrogeology mapping of NTS Mapsheet Saskatoon 073B, M1890–1030109. MDH, Saskatoon, SK

  • Mossop GD, Shetsen I (1994) Geological atlas of the Western Canada Sedimentary Basin. Canadian Society of Petroleum Geologists and Alberta Research Council, Edmonton, AB

  • Neuzil C (2019) Permeability Clays Shales 47(1):247–273. https://doi.org/10.1146/annurev-earth-053018-060437

  • Nilsson B, Sidle RC, Klint KE, Bøggild CE, Broholm K (2001) Mass transport and scale-dependent hydraulic tests in a heterogeneous glacial till: Sandy aquifer system. J Hydrol 243(3–4):162–179. https://doi.org/10.1016/S0022-1694(00)00416-9

    Article  Google Scholar 

  • Remenda VH, van der Kamp G, Cherry JA (1996) Use of vertical profiles of δ18O to constrain estimates of hydraulic conductivity in a thick, unfractured aquitard. Water Resour Res 32:2979–2987. https://doi.org/10.1029/96WR01778

    Article  Google Scholar 

  • Rutland WW, Cherry JA, Stan F (1991) The depth of fractures and active ground-water flow in a clayey till plain in southwestern Ontario. Ground Water 29:405–417. https://doi.org/10.1111/j.1745-6584.1991.tb00531.x

    Article  Google Scholar 

  • Sanchez-Vila X, Guadagnini A, Carrera J (2006) Representative hydraulic conductivities in saturated groundwater flow. Rev Geophys 44(3). https://doi.org/10.1029/2005RG000169

  • Schulze-Makuch D, Carlson DA, Cherkauer DS, Malik P (1999) Scale dependency of hydraulic conductivity in heterogeneous media. Ground Water 37:904–919. https://doi.org/10.1111/j.1745-6584.1999.tb01190.x

    Article  Google Scholar 

  • Shaw RJ (1997) Hydrogeology of a thick clay-rich till and Cretaceous bedrock clay sequence in Saskatchewan. University of Saskatchewan, Saskatoon, SK

    Google Scholar 

  • Shaw RJ, Hendry MJ (1998) Hydrogeology of a thick clay till and Cretaceous clay sequence, Saskatchewan, Canada. Can Geotech J 35:1041–1052. https://doi.org/10.1139/t98-060

    Article  Google Scholar 

  • Sidle RC, Nilsson B, Hansen M, Fredericia J (1998) Spatially varying hydraulic and solute transport characteristics of a fractured till determined by field trace tests, Funen, Denmark. Water Resour Res 34:2515–2527. https://doi.org/10.1029/98WR01735

    Article  Google Scholar 

  • SNC-Lavalin Inc. (2018a) Hydrogeological drilling, instrumentation, and testing. Broadview Project: environmental impact statement, SNC-Lavalin, Saskatoon, SK

    Google Scholar 

  • SNC-Lavalin Inc. (2018b) Hydrogeological drilling, instrumentation, and testing. Albany Project: environmental impact statement, SNC-Lavalin, Saskatoon, SK

    Google Scholar 

  • Tavenas F, Leblond P, Jean P, Leroueil S (1983) The permeability of natural soft clays, part I: methods of laboratory measurement. Can Geotech J 20:629–644. https://doi.org/10.1139/t83-072

    Article  Google Scholar 

  • van der Kamp G (1992) Evaluating the effects of fractures on solute transport through fractured clayey aquitards. In: 1992 conference of the International Association of Hydrogeologists, Canadian National Chapter, Hamilton, ON, pp 468–476

  • van der Kamp G (2001) Methods for determining the in situ hydraulic conductivity of shallow aquitards: an overview. Hydrogeol J 9:5–16. https://doi.org/10.1007/s100400000118

    Article  Google Scholar 

  • Williams RE, Farvolden RN (1967) The influence of joints on the movement of ground water through glacial till. J Hydrol 5:163–170. https://doi.org/10.1016/S0022-1694(67)80054-4

    Article  Google Scholar 

Download references

Acknowledgments

Assistance provided by Dr. S. Lee Barbour during the early research stage is gratefully acknowledged. Support and feedback provided by Dr. Chris Hawkes greatly eased the development of the manuscript. We further acknowledge the valuable and insightful feedback provided by reviewers Dr. Jacek Scibek and Dr. Peter Achtziger-Zupančič. The data set developed through this project (Ferris et al. 2019) is available at the Federal Research Data Repository (FRDR), a FAIR-aligned data repository.

Funding

Funding for this research was provided by the Sylvia Fedoruk Canadian Centre for Nuclear Innovation. This study was supported by the Prairie Water Project, Global Water Futures, of the Global Institute for Water Security, Saskatoon, Saskatchewan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Milo Ferris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferris, D.M., Potter, G. & Ferguson, G. Characterization of the hydraulic conductivity of glacial till aquitards. Hydrogeol J 28, 1827–1839 (2020). https://doi.org/10.1007/s10040-020-02161-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-020-02161-7

Keywords

Navigation