Skip to main content
Log in

A Morphological Method to Approximate Jumping Performance in Anurans for Macroevolutionary Studies

  • Tools and Techniques
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Organismal performance is often key in understanding macroevolutionary patterns but characterizing performance across many species is challenging, as the disparate geographic locations of taxa often prohibit in vivo measures. In theory, however, inferences on the evolution of performance could be investigated using anatomical approximations of performance parameters, allowing for a wider range of species to be sampled. In this study, we use biological and physical principles to mathematically derive three size-standardized anatomical approximations for three different aspects of jumping performance at take-off in anurans: peak jumping velocity, energy, and power. We also describe several ways to parameterize these approximations using, for example, measurements of leg length, leg muscle mass, and body mass. We evaluate the efficacy of these approaches via comparison with direct size-standardized measures of jumping performance across 256 individuals from 51 anuran species. Using both phylogenetic and non-phylogenetic approaches, we find that two of the three anatomical approximations (velocity and energy) are highly correlated with in vivo measures, while a third (power) is not. This reveals that the former may serve as reliable estimates of those aspects of jumping performance, while the latter approximation does not capture all aspects of jumping power in anurans. We also report significant phylogenetic signal for the approximations, as found in in vivo measures. These analyses demonstrate the utility of anatomical approximations for use in macroevolutionary studies. Relative to in vivo laboratory methods, this new method allows for broad museum-based taxonomic surveys of jumping performance in anurans and possibly other jumping animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Time-scaled phylogenetic tree used in analyses may be found in the Online Resource.

Code Availability

Scripts for all analyses in this study can be found at github.com/bhjuarez/approximations-for-jumping.

References

  • Adams, D. C. (2004). A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. Systematic Biology,63(5), 685–697.

    Google Scholar 

  • Adams, D. C. (2014). A method for assessing phylogenetic least squares models for shape and other high-dimensional multivariate data. Evolution,68(9), 2675–2688.

    PubMed  Google Scholar 

  • Adams, D. C., & Collyer, M. L. (2018a). Multivariate phylogenetic comparative methods: evaluations, comparisons, and recommendations. Systematic Biology,67(1), 14–31.

    PubMed  Google Scholar 

  • Adams, D. C., & Collyer, M. L. (2018b). Phylogenetic ANOVA: Group-clade aggregation, biological challenges, and a refined permutation procedure. Evolution,72(6), 1204–1215.

    PubMed  Google Scholar 

  • Adams, D. C., Collyer, M. L., & Kaliontzopoulou, A. (2020). Geomorph: Software for geometric morphometric analyses. R package version 3.2.1.0900. https://cran.r-project.org/package=geomorph.

  • Alexander, R. M. (1968). Animal Mechanics. Seattle, Washington, USA: University of Washington Press.

    Google Scholar 

  • AmphibiaWeb. (2020). https://amphibiaweb.org University of California, Berkeley, CA. Accessed 20 March 2020.

  • Arnold, S. J. (1983). Morphology, performance, fitness. American Zoologist,23(2), 347–361.

    Google Scholar 

  • Astley, H. C. (2016). The diversity ad evolution of locomotor muscle properties in anurans. Journal of Experimental Biology,219, 3163–3173.

    PubMed  Google Scholar 

  • Astley, H. C., & Roberts, T. J. (2012). Evidence for a vertebrate catapult: elastic energy storage in the plantaris tendon during frog jumping. Biology Letters,8(3), 386–389.

    PubMed  Google Scholar 

  • Bennet-Clark, H. C. (1977). Scale effects in jumping animals. In T. J. Pedley (Ed.), Scale effects in animal locomotion (pp. 195–201). New York: Academic Press.

    Google Scholar 

  • Blomberg, S. P., Garland, T., & Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution,57(4), 717–745.

    PubMed  Google Scholar 

  • Blomberg, S. P., Lefevre, J. G., Wells, J. A., & Waterhouse, M. (2012). Independent contrasts and PGLS regression estimators are equivalent. Systematic Biology,61(3), 382–391.

    PubMed  Google Scholar 

  • Calow, L. J., & Alexander, R. M. (1973). A mechanical analysis of a hind leg of a frog (Rana temporaria). Journal of Zoology,171(3), 293–321.

    Google Scholar 

  • Carroll, A. M., Wainwright, P. C., Huskey, S. H., Collar, D. C., & Turingan, R. G. (2004). Morphology predicts suction feeding performance in centrarchid fishes. Journal of Experimental Biology,207(22), 3873–3881.

    PubMed  Google Scholar 

  • Citadini, J. M., Brandt, R., Williams, C. R., & Gomes, F. R. (2018). Evolution of morphology and locomotor performance in anurans: Relationships with microhabitat diversification. Journal of Evolutionary Biology,31(3), 371–381.

    CAS  PubMed  Google Scholar 

  • Clemente, C. J., & Richards, C. (2013). Muscle function and hydrodynamics limit power and speed in swimming frogs. Nature Communications,4, 1–8.

    Google Scholar 

  • Collyer, M. L., & Adams, D. C. (2018). RRPP: An R package for fitting linear models to high-dimensional data using residual randomization. Methods in Ecology and Evolution,9(7), 1772–1779.

    Google Scholar 

  • Collyer, M. L., Sekora, D. J., & Adams, D. C. (2015). A method for analysis of phenotypic change for phenotypes described by high-dimensional data. Heredity,115, 357–365.

    CAS  PubMed  Google Scholar 

  • De Lisle, S. P., & Rowe, L. (2013). Correlated evolution of allometry and sexual dimorphism across higher taxa. The American Naturalist,182(5), 630–639.

    PubMed  Google Scholar 

  • Dillon, L. S. (1952). The myology of the araneid leg. Journal of Morphology,90(3), 467–480.

    Google Scholar 

  • Duellman, W. E., & Trueb, L. (1986). Biology of Amphibians. Baltimore, MD: Johns Hopkins University Press.

    Google Scholar 

  • Ellis, C. H. (1944). The mechanism of extension in the legs of spiders. Biological Bulletin,86(1), 41–50.

    Google Scholar 

  • Emerson, S. B. (1978). Allometry and jumping in frogs: Helping the twain to meet. Evolution,32(3), 551–564.

    PubMed  Google Scholar 

  • Emerson, S. B., & De Jongh, H. J. (1980). Muscle activity at the ilio-sacral articulation of frogs. Journal of Morphology,166(2), 129–144.

    PubMed  Google Scholar 

  • Felsenstein, J. (1985). Phylogenies and the comparative method. The American Naturalist,125(1), 1–15.

    Google Scholar 

  • Fukunaga, T., Roy, R. R., Shellock, F. G., Hodgson, J. A., & Edgerton, V. R. (1996). Specific tension of human plantar flexors and dorsiflexors. Journal of Applied Physiology,80(1), 158–165.

    CAS  PubMed  Google Scholar 

  • Gomes, F. R., Rezende, E. L., Grizante, M. B., & Navas, C. A. (2009). The evolution of jumping performance in anurans: morphological correlates and ecological implications. J. Evolution. Biol.,22(5), 1088–1097.

    CAS  Google Scholar 

  • Han, X., & Fu, J. (2013). Does life history shape sexual size dimorphism in anurans? A comparative analysis. BMC Evolutionary Biology,13(27), 1–11.

    Google Scholar 

  • Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E., & Challenger, W. (2008). GEIGER: Investigating evolutionary radiations. Bioinformatics,24(1), 129–131.

    CAS  PubMed  Google Scholar 

  • Hellam, D. C., & Podolsky, R. J. (1969). Force measurements in skinned muscle fibres. Journal of Physiology,200(3), 807–819.

    CAS  PubMed  Google Scholar 

  • Hirano, M., & Rome, L. C. (1984). Jumping performance of frogs (Rana pipiens) as a function of muscle temperature. Journal of Experimental Biology,108(2), 429–439.

    Google Scholar 

  • Hudson, C. M., Brown, G. P., & Shine, R. (2016). Athletic anurans: the impact of morphology, ecology and evolution on climbing ability in invasive cane toads. Biological Journal of the Linnean Society,119(4), 992–999.

    Google Scholar 

  • James, R. S., Navas, C. A., & Herrel, A. (2007). How important are skeletal muscle mechanics in setting limits on jumping performance? Journal of Experimental Biology,210(6), 923–933.

    PubMed  Google Scholar 

  • James, R. S., & Wilson, R. S. (2008). Explosive jumping: Extreme morphological and physiological specializations of Australian rocket frogs (Litoria nasuta). Physiological and Biochemical Zoology,81(2), 176–185.

    PubMed  Google Scholar 

  • Jetz, W., & Pyron, R. A. (2018). The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nature Ecology and Evolution,2(5), 850–858.

    PubMed  Google Scholar 

  • Jolliffe, I. T., & Cadima, J. (2016). Principal components analysis: a review and recent developments. Philosophical Transactions of the Royal Society B,374, 20150202. https://doi.org/10.1098/rsta.2015.0202.

    Article  Google Scholar 

  • Kaliontzopoulou, A., Adams, D. C., van der Meijden, A., Perera, A., & Carretero, M. A. (2012). Relationships between head morphology, bite performance and ecology in two species of Podarcis wall lizards. Evolutionary Ecology,26, 825–845.

    Google Scholar 

  • Kaliontzopoulou, A., Carretero, M. A., & Adams, D. C. (2015). Ecomorphological variation in male and female wall lizards and the macroevolution of sexual dimorphism in relation to habitat use. Journal of Evolutionary Biology,28(1), 80–94.

    CAS  PubMed  Google Scholar 

  • Kargo, W. J., & Rome, L. C. (2002). Functional morphology of proximal hindlimb muscles in the frog Rana pipiens. Journal of Experimental Biology,205(14), 1987–2004.

    PubMed  Google Scholar 

  • Kuo, C., Gillis, G. B., & Irschick, D. J. (2011). Loading effects on jump performance in green anole lizards Anolis carolinensis. The Journal of Experimental Biology,214(12), 2073–2079.

    PubMed  Google Scholar 

  • Losos, J. B. (1990a). The evolution of form and function: morphology and locomotor performance in West Indian Anolis lizards. Evolution,44(5), 1189–1203.

    PubMed  Google Scholar 

  • Losos, J. B. (1990b). Ecomorphology, performance capability, and scaling of West Indian Anolis lizards: An evolutionary analysis. Ecological Monographs,60(3), 369–388.

    Google Scholar 

  • Lutz, G. J., & Rome, L. C. (1994). Built for jumping: The design of the frog muscular system. Science,263, 370–372.

    CAS  PubMed  Google Scholar 

  • Marsh, R. L. (1994). Jumping ability of anuran amphibians. Advances in Veterinary Science and Comparative Medicine,38B, 51–111.

    CAS  PubMed  Google Scholar 

  • Marsh, R. L., & John-Alder, H. B. (1994). Jumping performance of hylid frogs measured with high-speed cine film. Journal of Experimental Biology,188, 131–141.

    CAS  PubMed  Google Scholar 

  • Martins, E. P., & Hansen, T. F. (1997). Phylogenies and the comparative method: A general approach to incorporating phylogenetic information into the analysis of interspecific data. The American Naturalist,149(4), 646–667.

    Google Scholar 

  • Mendoza, E., Azizi, E., & Moen, D. S. (2020). What explains vast differences in jumping power within a clade? Diversity, ecology and evolution of anuran jumping power. Functional Ecology,00, 1–11.

    Google Scholar 

  • Moen, D. S. (2019). What determines the distinct morphology of species with a particular ecology? The roles of many-to-one mapping and trade-offs in the evolution of frog ecomorphology and performance. The American Naturalist,194(4), E81–95.

    PubMed  Google Scholar 

  • Moen, D. S., Irschick, D. J., & Wiens, J. J. (2013). Evolutionary conservatism and convergence both lead to striking similarity in ecology, morphology and performance across continents in frogs. Proceedings of the Royal Society B,280(1773), 20132156.

    PubMed  Google Scholar 

  • Moen, D. S., Morlon, H., & Wiens, J. J. (2016). Testing convergence versus history: Convergence dominates phenotypic evolution for over 150 million years in frogs. Systematic Biology,65(1), 146–160.

    PubMed  Google Scholar 

  • Muñoz, M. M., Anderson, P. S. L., & Patek, S. N. (2017). Mechanical sensitivity and the dynamics of evolutionary rate shifts in biomechanical systems. Proceedings of the Royal Society B,284(1847), 20162325.

    PubMed  Google Scholar 

  • Nali, R. C., Zamudio, K. R., Haddad, C. F., & Prado, C. P. (2014). Size-dependent selective mechanisms on males and females and the evolution of sexual size dimorphism in frogs. The American Naturalist,184(6), 727–740.

    PubMed  Google Scholar 

  • Nauwelaerts, S., & Aerts, P. (2006). Take-off and landing forces in jumping frogs. Journal of Experimental Biology,209(1), 67–77.

    Google Scholar 

  • Olson, J. M., & Marsh, R. L. (1998). Activation patterns and length changes in hindlimb muscles of the bullfrog Rana catesbeiana during jumping. Journal of Experimental Biology,201(19), 2763–2777.

    CAS  PubMed  Google Scholar 

  • Patek, S. N., Nowroozi, B. N., Baio, J. E., Caldwell, R. L., & Summers, A. P. (2007). Linkage mechanics and power amplification of the mantis shrimp’s strike. Journal of Experimental Biology,210(20), 3677–3688. https://doi.org/10.1242/jeb.006486.

    Article  CAS  PubMed  Google Scholar 

  • Peplowski, M. M., & Marsh, R. L. (1997). Work and power output in the hindlimb muscles of Cuban tree frogs Osteopilus septentrionalis during jumping. Journal of Experimental Biology,200(22), 2861–2870.

    CAS  PubMed  Google Scholar 

  • Petrović, T. M., Vukov, T. D., & Kolarov, N. T. (2017). Sexual dimorphism in size and shape of traits related to locomotion in nine anuran species from Serbia and Montenegro. Folia Zoologica,66(1), 11–21.

    Google Scholar 

  • Porro, L. B., Collings, A. J., Ebergard, E. A., Chadwick, K. P., & Richards, C. T. (2017). Inverse dynamic modelling of jumping in the red-legged frog, Kassina maculata. The Journal of Experimental Biology,220, 1882–1893. https://doi.org/10.1242/jeb.155416.

    Article  PubMed  Google Scholar 

  • Pounds, J. A. (1988). Ecomorphology, locomotion, and microhabitat structure: Patterns in a tropical mainland Anolis community. Ecological Monographs,58(4), 299–320.

    Google Scholar 

  • Prikryl, T., Aerts, P., Havelkova, P., Herrel, A., & Rocek, Z. (2009). Pelvic and thigh musculature in frogs (Anura) and origin of anuran jumping locomotion. Journal of Anatomy,214, 100–139. https://doi.org/10.1111/j.1469-7580.2008.01006.x.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pyron, R. A., & Wiens, J. J. (2013). Large-scale phylogenetic analyses reveal the causes of high tropical amphibian diversity. Philosophical Transactions of the Royal Society B,280(1770), 20131622.

    Google Scholar 

  • Rand, A. S., & Rand, P. J. (1966). The relation of size and distance jumped in Bufo marinus. Herpetologica,22(3), 206–209.

    Google Scholar 

  • Richards, C. T., Eberhard, E. A., & Collings, A. J. (2018). The dynamic role of the ilio-sacral joint in jumping frogs. Biology Letters,14, 20180367. https://doi.org/10.1098/rsbl.2018.0367.

    Article  PubMed  PubMed Central  Google Scholar 

  • Richards, C. T., Porro, L. B., & Collings, A. J. (2017). Kinematic control of extreme jump angles in the red-legged running frog, Kassina maculata. Journal of Experimental Biology,220, 1894–1904.

    PubMed  Google Scholar 

  • Roberts, T. J., & Marsh, R. L. (2003). Probing the limits to muscle-powered accelerations: lessons from jumping bullfrogs. Journal of Experimental Biology,206, 2567–2580.

    PubMed  Google Scholar 

  • Sacks, R. D., & Roy, R. R. (1982). Architecture of the hind limb muscles of cats: Functional significance. Journal of Morphology,173(2), 185–195.

    CAS  PubMed  Google Scholar 

  • Shine, R. (2003). Effects of pregnancy on locomotor performance: An experimental study on lizards. Oecologia,136(3), 450–456.

    PubMed  Google Scholar 

  • Shu, G., Gong, Y., Xie, F., Wu, N. C., & Li, C. (2017). Effects of long-term preservation on amphibian body conditions: Implications for historical morphological research. PeerJ,5, e3805.

    PubMed  PubMed Central  Google Scholar 

  • Sidlauskas, B. (2008). Continuous and arrested morphological diversification in sister clades of characiform fishes: A phylomorphospace approach. Evolution,62(12), 3135–3156.

    PubMed  Google Scholar 

  • Sinervo, B., Hedges, R., & Adolph, S. C. (1991). Decreased sprint speed as a cost of reproduction in the lizard Sceloporus occidentalis: variation among populations. Journal of Experimental Biology,155, 323–336.

    Google Scholar 

  • Sotola, V. A., Craig, C. A., Pfaff, P. J., Maikoetter, J. D., Martin, N. H., & Bonner, T. H. (2019). Effect of preservation on fish morphology over time: Implications for morphological studies. PLoS ONE,14(3), e0213915.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sutton, G. P., Mendoza, E., Azizi, E., Longo, S. J., Olberding, J. P., Ilton, M., et al. (2019). Why do large animals never actuate their jumps with latch-mediated springs? Because they can jump higher without them. Integrative and Comparative Biology,59(6), 1609–1618.

    PubMed  PubMed Central  Google Scholar 

  • Toro, E., Herrel, A., & Irschick, D. (2004). The evolution of jumping performance in Caribbean Anolis lizards: Solutions to biomechanical trade-offs. The American Naturalist,163(6), 844–856.

    PubMed  Google Scholar 

  • Toro, E., Herrel, A., Vanhooydonck, B., & Irschick, D. J. (2003). A biomechanical analysis of intra- and interspecific scaling of jumping and morphology in Carribean Anolis lizards. Journal of Experimental Biology,206(15), 2641–2642.

    PubMed  Google Scholar 

  • Vervust, B., Van Dongen, S., & Van Damme, R. (2009). The effect of preservation on lizard morphometrics: An experimental study. Amphibia-Reptilia,30(3), 321–329.

    Google Scholar 

  • Vogel, S. (2005). Living in a physical world II. The bio-ballistics of small projectiles. Journal of Biosciences,30(2), 167–175.

    PubMed  Google Scholar 

  • Wilson, R. S., Franklin, C. E., & James, R. S. (2000). Allometric scaling relationships of jumping performance in the Striped Marsh Frog Limnodynastes peronii. Journal of Experimental Biology,203(12), 1937–1946.

    CAS  PubMed  Google Scholar 

  • Zug, G. R. (1972). Anuran locomotion: Structure and function I: Preliminary observations on relation between jumping and osteometrics of appendicular and postaxial skeleton. Copeia,4(4), 613–624.

    Google Scholar 

  • Zug, G. R. (1978). Anuran locomotion–structure and function, 2: Jumping performance of semiaquatic, terrestrial, and arboreal frogs. Smithsonian Contributions to Zoology,276, 1–31.

    Google Scholar 

Download references

Acknowledgements

We thank the Heath-Adams Joint Lab Group, Dr. Philip Dixon, and anonymous reviewers for providing valuable feedback on previous versions of this manuscript.

Funding

This work was supported by a National Science Foundation Graduate Research Fellowship (to BHJ), NSF Grants DEB-1556379 and DBI-1902511 (to DCA), and DEB-1655812 (to DSM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan H. Juarez.

Ethics declarations

Conflict of interest

The authors declare no conflicts or competing interests.

Informed Consent

The authors all consent to publication.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 186 kb)

Supplementary material 2 (NEX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juarez, B.H., Moen, D.S. & Adams, D.C. A Morphological Method to Approximate Jumping Performance in Anurans for Macroevolutionary Studies. Evol Biol 47, 260–271 (2020). https://doi.org/10.1007/s11692-020-09509-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-020-09509-7

Keywords

Navigation