Skip to main content

Advertisement

Log in

Optical characteristics of colored dissolved organic matter during blooms of Trichodesmium in the coastal waters off Goa

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Trichodesmium, a marine cyanobacterium, plays a significant role in the global nitrogen cycle due to its nitrogen fixing ability. Large patches of Trichodesmium blooms were observed in the coastal waters, off Goa during spring intermonsoon (SIM) of 2014–2018. Zeaxanthin was the dominant pigment in the bloom region. Here, we present the spectral absorption and fluorescence characteristics of colored dissolved organic matter (CDOM) during these blooms. CDOM concentration was much higher in the bloom patches as compared with nonbloom regions. During the bloom spectral CDOM absorption had distinct peaks in the UV region due to the presence of UV-absorbing/screening compounds, mycosporine-like amino acids (MAAs) and in the visible region due to phycobiliproteins (PBPs). The spectral fluorescence signatures by the traditional peak picking method exhibited three peaks, one was protein-like, and the other two were humic-like. Apart from these, Trichodesmium exhibited strong protein-like fluorescence with 370/460 nm (Ex/Em), which is a signature of cyanobacteria. A parallel factor analysis (PARAFAC) on the fluorescence excitation-emission matrix (EEM) of Trichodesmium dataset fitted a 3-component model of which one was protein-like, and two were humic-like. The fluorescence index (FI) values during Trichodesmium bloom was very high (~ 3) compared with the typical range of 1.2–1.8 observed for the natural waters. Bloom degradation experiments proved that increase in tryptophan fluorescence enhances the CDOM absorption. Our study indicates that Trichodesmium blooms provide a rich source of organic matter in the coastal waters and long-term monitoring of these blooms is essential for understanding the health of ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmed, A., Gauns, M., Kurian, S., Bardhan, P., Pratihary, A., Naik, H., Shenoy, D. M., & Naqvi, S. W. A. (2017). Nitrogen fixation rates in the eastern Arabian Sea. Estuarine, Coastal and Shelf Science, 191, 74–83.

    CAS  Google Scholar 

  • Bar-Zeev, E., Avishay, I., Bidle, K. D., & Berman-Frank, I. (2013). Programmed cell death in the marine cyanobacterium Trichodesmium mediates carbon and nitrogen export. The ISME Journal, 7(12), 2340–2348.

    CAS  Google Scholar 

  • Basu, S., Matondkar, S. P., & Furtado, I. (2011). Enumeration of bacteria from a Trichodesmium spp. bloom of the Eastern Arabian Sea: elucidation of their possible role in biogeochemistry. Journal of Applied Phycology, 23(2), 309–319.

    CAS  Google Scholar 

  • Bell, P. R., Uwins, P. J., Elmetri, I., Phillips, J. A., Fu, F. X., & Yago, A. J. (2005). Laboratory culture studies of Trichodesmium isolated from the great Barrier Reef Lagoon, Australia. Hydrobiologia, 532(1-3), 9–21.

    Google Scholar 

  • Berman-Frank, I., Quigg, A., Finkel, Z. V., Irwin, A. J., & Haramaty, L. (2007). Nitrogen-fixation strategies and Fe requirements in cyanobacteria. Limnology and Oceanography, 52(5), 2260–2269.

    Google Scholar 

  • Borstad, L. E. (1978). A qualitative and quantitative examination of bacteria associated with trichodesmium:(Cyanobacteria) Species Near Barbados Doctoral dissertation, McGill University.

  • Capone, D. G., Zehr, J. P., Paerl, H. W., Bergman, B., & Carpenter, E. J. (1997). Trichodesmium, a globally significant marine cyanobacterium. Science, 276(5316), 1221–1229.

    CAS  Google Scholar 

  • Carpenter, E. J., & Capone, D. G. (1992). Nitrogen fixation in Trichodesmium blooms. In Marine pelagic cyanobacteria: Trichodesmium and other diazotrophs (pp. 211–217). Dordrecht: Springer.

    Google Scholar 

  • Carpenter, K. D., Kraus, T., Goldman, J., Saracen, J. F., Downing, B., & Bergamaschi, B. (2013). Sources and characteristics of organic matter in the Clackamas River, Oregon, related to the formation of disinfection by-products in treated drinking water. Denver: Water Research Foundation.

    Google Scholar 

  • Chen, Y. B., Zehr, J. P., & Mellon, M. (1996). Growth and nitrogen fixation of the diazotrophic filamentous nonheterocystous cyanobacterium Trichodesmium sp. Ims 101 in defined media: evidence for a circadian rhythm 1. Journal of Phycology, 32(6), 916–923.

    Google Scholar 

  • Coble, P. G. (1996). Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Marine Chemistry, 51(4), 325–346.

    CAS  Google Scholar 

  • Coble, P. G. (2007). Marine optical biogeochemistry: the chemistry of ocean color. Chemical Reviews, 107(2), 402–418.

    CAS  Google Scholar 

  • Coble, P. G., Del Castillo, C. E., & Avril, B. (1998). Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon. Deep Sea Research Part II: Topical Studies in Oceanography, 45(10-11), 2195–2223.

    CAS  Google Scholar 

  • Conde, F. R., Churio, M. S., & Previtali, C. M. (2004). The deactivation pathways of the excited-states of the mycosporine-like amino acids shinorine and porphyra-334 in aqueous solution. Photochemical & Photobiological Sciences, 3(10), 960–967.

    CAS  Google Scholar 

  • Cory, R. M., McKnight, D. M., Chin, Y. P., Miller, P., & Jaros, C. L. (2007). Chemical characteristics of fulvic acids from Arctic surface waters: Microbial contributions and photochemical transformations. Journal of Geophysical Research – Biogeosciences, 112(G4).

  • Cory, R. M., Miller, M. P., McKnight, D. M., Guerard, J. J., & Miller, P. L. (2010). Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra. Limnology and Oceanography: Methods, 8(2), 67–78.

    CAS  Google Scholar 

  • D’Silva, M. S., Anil, A. C., Naik, R. K., & D’Costa, P. M. (2012). Algal blooms: a perspective from the coasts of India. Natural Hazards, 63(2), 1225–1253.

    Google Scholar 

  • Dartnell, L. R., Storrie-Lombardi, M. C., Mullineaux, C. W., Ruban, A. V., Wright, G., Griffiths, A. D., Muller, J. P., & Ward, J. M. (2011). Degradation of cyanobacterial biosignatures by ionizing radiation. Astrobiology, 11(10), 997–1016.

    CAS  Google Scholar 

  • DeGrandpre, M. D., Vodacek, A., Nelson, R. K., Bruce, E. J., & Blough, N. V. (1996). Seasonal seawater optical properties of the US Middle Atlantic Bight. Journal of Geophysical Research, Oceans, 101(C10), 22727–22736.

    CAS  Google Scholar 

  • de la Coba, F., Aguilera, J., Korbee, N., de Gálvez, M. V., Herrera-Ceballos, E., Álvarez-Gómez, F., & Figueroa, F. L. (2019). UVA and UVB photoprotective capabilities of topical formulations containing mycosporine-like amino acids (MAAs) through different biological effective protection factors (BEPFs). Marine Drugs, 17(1), 55.

    CAS  Google Scholar 

  • Desa, E. S., Suresh, T., Matondkar, S. G. P., Desa, E., Goes, J., Mascarenhas, A. A. M. Q., et al. (2005). Detection of Trichodesmium bloom patches along the eastern Arabian Sea by IRS-P4/OCM ocean color sensor and by in-situ measurements. Indian Journal of Marine Science, 34(4), 374–386.

    Google Scholar 

  • Devassy, V. P., Bhattathiri, P. M. A., & Qasim, S. Z. (1978). Trichodesmium phenomenon [India]. Indian Journal of Marine Sciences (India).

  • Dias, A., Kurian, S., & Thyapurath, S. (2020). Influence of environmental parameters on bio-optical characteristics of colored dissolved organic matter in a complex tropical coastal and estuarine region. Estuarine, Coastal and Shelf Science, 106864.

  • Dupouy, C., Neveux, J., Dirberg, G., Rottgers, R., Tenório, M. M. B., & Ouillon, S. (2008). Bio-optical properties of the marine cyanobacteria Trichodesmium spp. Journal of Applied Remote Sensing, 2(1), 023503.

    Google Scholar 

  • Eppley, R. W., & Peterson, B. J. (1979). Particulate organic matter flux and planktonic new production in the deep ocean. Nature, 282(5740), 677–680.

    Google Scholar 

  • Fleck, J. A., Gill, G., Bergamaschi, B. A., Kraus, T. E., Downing, B. D., & Alpers, C. N. (2014). Concurrent photolytic degradation of aqueous methylmercury and dissolved organic matter. Science of the Total Environment, 484, 263–275.

    CAS  Google Scholar 

  • Fukuzaki, K., Imai, I., Fukushima, K., Ishii, K. I., Sawayama, S., & Yoshioka, T. (2014). Fluorescent characteristics of dissolved organic matter produced by bloom-forming coastal phytoplankton. Journal of Plankton Research, 36(3), 685–694.

    Google Scholar 

  • Gandhi, N., Singh, A., Prakash, S., Ramesh, R., Raman, M., Sheshshayee, M. S., & Shetye, S. (2011). First direct measurements of N2 fixation during a Trichodesmium bloom in the eastern Arabian Sea. Global Biogeochemical Cycles, 25(4).

  • Groom, S. B., Sathyendranath, S., Ban, Y., Bernard, S., Brewin, B., Brotas, V., et al. (2019). Satellite ocean colour: current status and future perspective. Frontiers in Marine Science, 6, 485.

    Google Scholar 

  • Guéguen, C., Cuss, C. W., Cassels, C. J., & Carmack, E. C. (2014). Absorption and fluorescence of dissolved organic matter in the waters of the Canadian Arctic Archipelago, Baffin Bay, and the Labrador Sea. Journal of Geophysical Research, Oceans, 119(3), 2034–2047.

    Google Scholar 

  • Hansen, A. M., Kraus, T. E., Pellerin, B. A., Fleck, J. A., Downing, B. D., & Bergamaschi, B. A. (2016). Optical properties of dissolved organic matter (DOM): Effects of biological and photolytic degradation. Limnology and Oceanography, 61(3), 1015–1032.

    CAS  Google Scholar 

  • Hayase, K., & Tsubota, H. (1985). Sedimentary humic acid and fulvic acid as fluorescent organic materials. Geochimica et Cosmochimica Acta, 49(1), 159–163.

    CAS  Google Scholar 

  • Helms, J. R., Stubbins, A., Perdue, E. M., Green, N. W., Chen, H., & Mopper, K. (2013). Photochemical bleaching of oceanic dissolved organic matter and its effect on absorption spectral slope and fluorescence. Marine Chemistry, 155, 81–91.

    CAS  Google Scholar 

  • Jaffé, R., McKnight, D., Maie, N., Cory, R., McDowell, W. H., & Campbell, J. L. (2008). Spatial and temporal variations in DOM composition in ecosystems: The importance of long-term monitoring of optical properties. Journal of Geophysical Research – Biogeosciences, 113(G4).

  • Jyothibabu, R., Karnan, C., Jagadeesan, L., Arunpandi, N., Pandiarajan, R. S., Muraleedharan, K. R., & Balachandran, K. K. (2017). Trichodesmium blooms and warm-core ocean surface features in the Arabian Sea and the Bay of Bengal. Marine Pollution Bulletin, 121(1-2), 201–215.

    CAS  Google Scholar 

  • Kinsey, J. D., Corradino, G., Ziervogel, K., Schnetzer, A., & Osburn, C. L. (2018). Formation of chromophoric dissolved organic matter by bacterial degradation of phytoplankton-derived aggregates. Frontiers in Marine Science, 4, 430.

    Google Scholar 

  • Klisch, M., & Häder, D. (2008). Mycosporine-like amino acids and marine toxins-The common and the different. Marine Drugs, 6(2), 147–163.

    CAS  Google Scholar 

  • Knap, A. H., Michaels, A., Close, A. R., Ducklow, H., & Dickson, A. G. (1996). Protocols for the joint global ocean flux study (JGOFS) core measurements.

    Google Scholar 

  • Korak, J. A., Wert, E. C., & Rosario-Ortiz, F. L. (2015). Evaluating fluorescence spectroscopy as a tool to characterize cyanobacteria intracellular organic matter upon simulated release and oxidation in natural water. Water Research, 68, 432–443.

    CAS  Google Scholar 

  • Larsson, T., Wedborg, M., & Turner, D. (2007). Correction of inner-filter effect in fluorescence excitation-emission matrix spectrometry using Raman scatter. Analytica Chimica Acta, 583(2), 357–363.

    CAS  Google Scholar 

  • Lawaetz, A. J., & Stedmon, C. A. (2009). Fluorescence intensity calibration using the Raman scatter peak of water. Applied Spectroscopy, 63(8), 936–940.

    CAS  Google Scholar 

  • Ma, X. D., & Ali, N. (2009). Detection of a DNA-like materials in Suwannee River Fulvic Acid (pp. 66–89). Beijing: Natural organic matter and its significance in the environment. Science Press.

    Google Scholar 

  • Mague, T. H., Friberg, E., Hughes, D. J., & Morris, I. (1980). Extracellular release of carbon by marine phytoplankton; a physiological approach1. Limnology and Oceanography, 25(2), 262–279.

    CAS  Google Scholar 

  • Mayer, L. M., Schick, L. L., & Loder III, T. C. (1999). Dissolved protein fluorescence in two Maine estuaries. Marine Chemistry, 64(3), 171–179.

    CAS  Google Scholar 

  • McKinna, L. I. (2015). Three decades of ocean-color remote-sensing Trichodesmium spp. in the world’s oceans: a review. Progress in Oceanography, 131, 177–199.

    Google Scholar 

  • McKnight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe, T., & Andersen, D. T. (2001). Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography, 46(1), 38–48.

    CAS  Google Scholar 

  • Mitchell, B. G., Bricaud, A., Carder, K., Cleveland, J., Ferrari, G. M., Gould, R., Kahru, M., Kishino, M., et al. (2000). Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples. In G. S. Fargion, J. L. Mueller, & C. R. McClain (Eds.), Ocean optics protocols for satellite ocean color sensor validation, revision 2, NASA Technical Memorandum, Chapter 12 (Vol. 2000-209966, pp. 125–153).

    Google Scholar 

  • Murphy, K. R., Stedmon, C. A., Graeber, D., & Bro, R. (2013). Fluorescence spectroscopy and multi-way techniques. PARAFAC. Analytical Methods, 5(23), 6557–6566.

    CAS  Google Scholar 

  • Myklestad, S. M. (1995). Release of extracellular products by phytoplankton with special emphasis on polysaccharides. Science of the Total Environment, 165(1-3), 155–164.

    CAS  Google Scholar 

  • Nagata, T. (2000). Production mechanisms of dissolved organic matter. In D. L. Kirchmann (Ed.), Microbial ecology of the oceans (pp. 121–151). New York: John Wiley and Sons, Inc.

    Google Scholar 

  • Neveux, J., Tenírio, M. M., Dupouy, C., & Villareal, T. A. (2006). Spectral diversity of phycoerythrins and diazotroph abundance in tropical waters. Limnology and Oceanography, 51(4), 1689–1698.

    CAS  Google Scholar 

  • Okaichi, T. (1976). Identification of ammonia as the toxic principle of red tide of Noctiluca miliaris. Bulletin of Plankton Society of Japan, 23, 75–80.

    Google Scholar 

  • Oren, A., & Gunde-Cimerman, N. (2007). Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites? FEMS Microbiology Letters, 269(1), 1–10.

    CAS  Google Scholar 

  • Paerly, H. W., Bebout, B. M., & Prufert, L. E. (1989). Bacterial associations with marine oscillatoria sp.(trichodesmium sp.) Populations: ecophysiological implications. Journal of Phycology, 25(4), 773–784.

    Google Scholar 

  • Parab, S. G., & Matondkar, S. G. P. (2012). Primary productivity and nitrogen fixation by Trichodesmium spp. in the Arabian Sea. Journal of Marine Systems, 105, 82–95.

    Google Scholar 

  • Parab, S. G., Matondkar, S. P., Gomes, H. D. R., & Goes, J. I. (2006). Monsoon driven changes in phytoplankton populations in the eastern Arabian Sea as revealed by microscopy and HPLC pigment analysis. Continental Shelf Research, 26(20), 2538–2558.

    Google Scholar 

  • Pegau, W. S., & Zaneveld, J. R. (1993). Temperature-dependent absorption of water in the red and near-infrared portions of the spectrum. Limnology and Oceanography, 38(1), 188–192.

    CAS  Google Scholar 

  • Qasim, S. Z. (1972). Some observations on Trichodesmium blooms. In International Symposium on Taxonomy and Biology of Bluegreen Algae, 1st, Madras, 1970. Papers.

  • Rastogi, R. P., & Sinha, R. P. (2009). Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnology Advances, 27(4), 521–539.

    CAS  Google Scholar 

  • Reche, I., Pace, M. L., & Cole, J. J. (1998). Interactions of photobleaching and inorganic nutrients in determining bacterial growth on colored dissolved organic carbon. Microbial Ecology, 36(3-4), 270–280.

    CAS  Google Scholar 

  • Reche, I., Pace, M. L., & Cole, J. J. (1999). Relationship of trophic and chemical conditions to photobleaching of dissolved organic matter in lake ecosystems. Biogeochemistry, 44(3), 259–280.

    Google Scholar 

  • Richa, R. R., Kumari, S., Singh, K. L., Kannaujiya, V. K., Singh, G., Kesheri, M., & Sinha, R. P. (2011). Biotechnological potential of mycosporine-like amino acids and phycobiliproteins of cyanobacterial origin. Biotechnology, Bioinformatics and Bioengineering, 1, 159–171.

    Google Scholar 

  • Romera-Castillo, C. R., Sarmento, H., Alvarez-Salgado, X. A., Gasol, J. M., & Marrasé, C. (2010). Production of chromophoric dissolved organic matter by marine phytoplankton. Limnology and Oceanography, 55(1), 446–454.

    CAS  Google Scholar 

  • Romera-Castillo, C. R., Sarmento, H., Alvarez-Salgado, X. A., Gasol, J. M., & Marrasé, C. (2011). Net production and consumption of fluorescent colored dissolved organic matter by natural bacterial assemblages growing on marine phytoplankton exudates. Applied and Environmental Microbiology, 77(21), 7490–7498.

    CAS  Google Scholar 

  • Roy, R., Pratihary, A., Mangesh, G., & Naqvi, S. W. A. (2006). Spatial variation of phytoplankton pigments along the southwest coast of India. Estuarine, Coastal and Shelf Science, 69(1-2), 189–195.

    Google Scholar 

  • Roy, R., Pratihary, A., Narvenkar, G., Mochemadkar, S., Gauns, M., & Naqvi, S. W. A. (2011). The relationship between volatile halocarbons and phytoplankton pigments during a Trichodesmium bloom in the coastal eastern Arabian Sea. Estuarine, Coastal and Shelf Science, 95(1), 110–118.

    CAS  Google Scholar 

  • Sellner, K. G. (1992). Trophodynamics of marine cyanobacteria blooms. In Marine pelagic cyanobacteria: Trichodesmium and other diazotrophs (pp. 75–94). Dordrecht: Springer.

    Google Scholar 

  • Sivonen, K., & Börner, T. (2008). Bioactive compounds produced by cyanobacteria. In The cyanobacteria: molecular biology, genomics and evolution (pp. 159–197).

    Google Scholar 

  • Stedmon, C. A., Markager, S., & Bro, R. (2003). Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Marine Chemistry, 82(3-4), 239–254.

    CAS  Google Scholar 

  • Stedmon, C. A., Thomas, D. N., Papadimitriou, S., Granskog, M. A., & Dieckmann, G. S. (2011). Using fluorescence to characterize dissolved organic matter in Antarctic sea ice brines. Journal of Geophysical Research – Biogeosciences, 116(G3).

  • Steinberg, D. K., Nelson, N. B., Carlson, C. A., & Prusak, A. (2004). Production of chromophoric dissolved organic matter (CDOM) in the open ocean by zooplankton and the colonial cyanobacterium Trichodesmium spp. Marine Ecology Progress Series, 267, 45–56.

    CAS  Google Scholar 

  • Subramaniam, A., Carpenter, E. J., & Falkowski, P. G. (1999). Bio-optical properties of the marine diazotrophic cyanobacteria Trichodesmium spp. II. A reflectance model for remote sensing. Limnology and Oceanography, 44(3), 618–627.

    CAS  Google Scholar 

  • Suksomjit, M., Nagao, S., Ichimi, K., Yamada, T., & Tada, K. (2009). Variation of dissolved organic matter and fluorescence characteristics before, during and after phytoplankton bloom. Journal of Oceanography, 65(6), 835–846.

    CAS  Google Scholar 

  • Suresh, T., Desa, E., Desai, R. G. P., Jayaraman, A., & Mehra, P. (1996). Photosynthetically available radiation in the central and eastern Arabian Sea. Current Science, 71(11), 883–887.

    Google Scholar 

  • Thurman, E. M. (1985). Amount of organic carbon in natural waters. In Organic geochemistry of natural waters (pp. 7–65). Dordrecht: Springer.

    Google Scholar 

  • Tilstone, G. H., Moore, G. F., Sørensen, K., Doerfeer, R., Røttgers, R., Ruddick, K. D., et al. (2002). Regional validation of MERIS chlorophyll products in North Sea coastal waters. In REVAMP Methodologies EVGI-CT-2001-00049.

    Google Scholar 

  • Tomas, C. R., (1997). Identifying marine phytoplankton. New York: Academic Press.

  • Van Baalen, C., & Brown, R. M. (1969). The ultrastructure of the marine blue green alga, Trichodesmium erythraeum, with special reference to the cell wall, gas vacuoles, and cylindrical bodies. Archiv für Mikrobiologie, 69(1), 79–91.

    Google Scholar 

  • Van den Meersche, K., Middelburg, J. J., Soetaert, K., Van Rijswijk, P., Boschker, H. T., & Heip, C. H. (2004). Carbon-nitrogen coupling and algal-bacterial interactions during an experimental bloom: modeling a 13C tracer experiment. Limnology and Oceanography, 49(3), 862–878.

    Google Scholar 

  • Whitehead, K., and Hedges, J. I. (2005). Photodegradation and photosensitization of mycosporine-like amino acids. Journal of Photochemistry and Photobiology B: Biology, 80(2), 115–121.

  • Yamashita, Y., & Tanoue, E. (2003). Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids. Marine Chemistry, 82(3-4), 255–271.

    CAS  Google Scholar 

  • Yamashita, Y., & Tanoue, E. (2004). In situ production of chromophoric dissolved organic matter in coastal environments. Geophysical Research Letters, 31(14).

  • Yamashita, Y., Cory, R. M., Nishioka, J., Kuma, K., Tanoue, E., & Jaffé, R. (2010). Fluorescence characteristics of dissolved organic matter in the deep waters of the Okhotsk Sea and the northwestern North Pacific Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 57(16), 1478–1485.

    CAS  Google Scholar 

  • Zhang, Y., van Dijk, M. A., Liu, M., Zhu, G., & Qin, B. (2009). The contribution of phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes: field and experimental evidence. Water Research, 43(18), 4685–4697.

    CAS  Google Scholar 

  • Zhang, Y., Zhang, E., Yin, Y., Van Dijk, M. A., Feng, L., Shi, Z., et al. (2010). Characteristics and sources of chromophoric dissolved organic matter in lakes of the Yungui Plateau, China, differing in trophic state and altitude. Limnology and Oceanography, 55(6), 2645–2659.

    CAS  Google Scholar 

  • Zhang, Y., Yin, Y., Feng, L., Zhu, G., Shi, Z., Liu, X., & Zhang, Y. (2011). Characterizing chromophoric dissolved organic matter in Lake Tianmuhu and its catchment basin using excitation-emission matrix fluorescence and parallel factor analysis. Water Research, 45(16), 5110–5122.

    CAS  Google Scholar 

  • Zhao, Z., Gonsior, M., Luek, J., Timko, S., Ianiri, H., Hertkorn, N., Schmitt-Kopplin, P., Fang, X., Zeng, Q., Jiao, N., & Chen, F. (2017). Picocyanobacteria and deep-ocean fluorescent dissolved organic matter share similar optical properties. Nature Communications, 8, 15284.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Director, CSIR-National Institute of Oceanography, for providing the facilities and support. We also acknowledge other colleagues who have helped in the field measurements and also in preparation of the manuscript. A. Dias acknowledges CSIR for providing research fellowship. This study was supported by the Space Application Centre (Indian Space Research Organization), Ahmedabad, India, under the MOP-3 program (grant number GAP2840). This is NIO contribution No: 6570.

Funding

This study was funded by the Space Application Centre (Indian Space Research Organization), Ahmedabad, India, under the MOP-3 program (grant number GAP2840).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siby Kurian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias, A., Kurian, S. & Thayapurath, S. Optical characteristics of colored dissolved organic matter during blooms of Trichodesmium in the coastal waters off Goa. Environ Monit Assess 192, 526 (2020). https://doi.org/10.1007/s10661-020-08494-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08494-w

Keywords

Navigation