Skip to main content

Advertisement

Log in

Environmental and human health risk assessment of potentially toxic elements in soils around the largest coal-fired power station in Southern Russia

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The combustion of solid fuel at power plants pollutes adjacent areas with potentially toxic elements (PTEs), which increases risks to public health in the vicinity of these facilities. The proposed paper presents the results of a geochemical study of PTEs (Cr, Mn, Ni, Cu, Zn, Cd, and Pb) contamination in the vicinity of Novocherkassk Power Plant (NPP) as it relates to environmental and human health risks. The impact zone of NPP is pronounced for a distance of approximately 7 km northwest of the enterprise—the second largest coal power plant in Southern Russia. Data from monitoring sites lead us to conclude that spatial patterns of soil pollution are strongly influenced by the peculiarities of local atmospheric circulation, while the characteristics of soils within the study area play a secondary role. The highest levels of PTEs and their exchangeable forms exceed both regional background and sanitary and hygienic standards within a radius of 3 km to the west of the plant, which corresponds to a zone of soils contaminated with Cr, Ni, Cu, Zn, Cd, and Pb. The carcinogenic risk to human health slightly exceeds the permissible standard of 1 × 10−6 for soils in close vicinity of the enterprise due to the potential human intake of Ni, Cd, and Pb. The results of the health risk assessment indicate no noncarcinogenic risks for adults, while for children, they are low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adriano, D. C. (2001). Trace elements in terrestrial environments: Biogeochemistry, bioavailability, and risks of metals (2nd ed.). New York: Springer-Verlag. https://doi.org/10.1007/978-0-387-21510-5.

    Book  Google Scholar 

  • Asante-Duah, K. (2017). Public health risk assessment for human exposure to chemicals (2nd ed.). Dordrecht: Springer. https://doi.org/10.1007/978-94-024-1039-6.

    Book  Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry). (2019). Minimal risk levels (MRLs) list. Retrieved December 5, 2019, from https://www.atsdr.cdc.gov/mrls/mrllist.asp#15tag.

  • Barsova, N., Yakimenko, O., Tolpeshta, I., & Motuzova, G. (2019). Current state and dynamics of heavy metal soil pollution in Russian Federation—A review. Environmental Pollution, 249, 200–207. https://doi.org/10.1016/j.envpol.2019.03.020.

    Article  CAS  Google Scholar 

  • Bogdanov, N. A. (2012). Analysis of the in formative value of integral indicators of chemical soil contamination in the evaluation of the status of areas. Gigiena i sanitaria, 91(1), 10–13. (in Russian).

    Google Scholar 

  • Burachevskaya, M., Minkina, T., Mandzhieva, S., Bauer, T., Chaplygin, V., Zamulina, I., et al. (2019). Study of copper, lead, and zinc speciation in the Haplic Chernozem surrounding coal-fired power plant. Applied Geochemistry, 104, 102–108. https://doi.org/10.1016/j.apgeochem.2019.03.016.

    Article  CAS  Google Scholar 

  • CCME (Canadian Council of Ministers of the Environment). (1999). Canadian soil quality guidelines for the protection of environmental and human health: Chromium (total 1997) (VI 1999). In Canadian environmental quality guidelines. Winnipeg: Canadian Council of Ministers of the Environment. Retrieved December 5, 2019, from https://ceqg-rcqe.ccme.ca/download/en/262/.

  • Chaplygin, V., Mandzhieva, S., Minkina, T., Sushkova, S., Kizilkaya, R., Gülser, C., et al. (2019). Sustainability of agricultural and wild cereals to aerotechnogenic exposure. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-019-00411-6.

    Article  Google Scholar 

  • Chaplygin, V., Minkina, T., Mandzhieva, S., Burachevskaya, M., Sushkova, S., Poluektov, E., et al. (2018). The effect of technogenic emissions on the heavy metals accumulation by herbaceous plants. Environmental Monitoring and Assessment, 190, 124. https://doi.org/10.1007/s10661-018-6489-6.

    Article  CAS  Google Scholar 

  • Chernova, O. V., & Beketskaya, O. V. (2011). Permissible and background concentrations of pollutants in environmental regulation (heavy metals and other chemical elements). Eurasian Soil Science, 44(9), 1008–1017. https://doi.org/10.1134/S106422931109002X.

    Article  CAS  Google Scholar 

  • Crossgrove, J., & Zheng, W. (2004). Manganese toxicity upon overexposure. NMR in Biomedicine, 17(8), 544–553. https://doi.org/10.1002/nbm.931.

    Article  CAS  Google Scholar 

  • Ćujić, M., Dragović, S., Đorđević, M., Dragović, R., & Gajić, B. (2016). Environmental assessment of heavy metals around the largest coal fired power plant in Serbia. CATENA, 139, 44–52. https://doi.org/10.1016/j.catena.2015.12.001.

    Article  CAS  Google Scholar 

  • da Silva Júnior, F. M. R., Ramires, P. F., dos Santos, M., Seus, E. R., Soares, M. C. F., Muccillo-Baisch, A. L., et al. (2019). Distribution of potentially harmful elements in soils around a large coal-fired power plant. Environmental Geochemistry and Health, 41, 2131–2143. https://doi.org/10.1007/s10653-019-00267-w.

    Article  CAS  Google Scholar 

  • D’yachenko, V. V., & Matasova, I. Y. (2016). Regional clarkes of chemical elements in soils of southern European Russia. Eurasian Soil Science, 49, 1091–1098. https://doi.org/10.1134/S1064229316100069.

    Article  CAS  Google Scholar 

  • Eisler, R. (2000). Cadmium. In R. Eisler (Ed.), Handbook of chemical risk assessment: Health hazards to humans, plants, and animals. Metals (Vol. 1, pp. 1–43). Boca Raton: Lewis Publishers.

    Google Scholar 

  • Gad, S. C. (2014a). Chromium. In P. Wexler (Ed.), Encyclopedia of toxicology (3rd ed., Vol. 1, pp. 952–954). London, Burlington, San Diego: Elsevier. https://doi.org/10.1016/B978-0-12-386454-3.00828-9

    Chapter  Google Scholar 

  • Gad, S. C. (2014). Copper. In P. Wexler (Ed.), Encyclopedia of toxicology (3rd ed., Vol. 1, pp. 1034–1036). London, Burlington, San Diego: Elsevier. https://doi.org/10.1016/B978-0-12-386454-3.00834-4

    Chapter  Google Scholar 

  • Gazprom. (2020). Power generation. Retrieved February 7, 2020, from https://www.gazprom.com/about/production/energetics/.

  • GN 2.1.7.2041-06. (2006). Maximum allowable concentration (MAC) of chemicals in the soil. Moscow: Federal Center for Hygiene and Epidemiology of Rospotrebnadzor (in Russian).

  • GN 2.1.7.2511-09. (2009). Tentative allowable concentrations (TAC) of chemicals in the soil. Moscow: Federal Center for Hygiene and Epidemiology of Rospotrebnadzor (in Russian).

  • GOST 17.4.1.02-83. (1984). Nature protection. Soils. Classification of chemicals for pollution control. Moscow: Standardinform (in Russian).

  • GOST 17.4.4.02-2017. (2018). Nature protection. Soils. Methods (or sampling and preparation of soil for chemical, bacteriological, helmintological analysis. Moscow: Standardinform (in Russian).

  • Grigoriev, N. A. (2009). Chemical element distribution in the upper continental crust. Ekaterinburg: UB RAS. (in Russian).

    Google Scholar 

  • Guney, M., Zagury, G. J., Dogan, N., & Onay, T. T. (2010). Exposure assessment and risk characterization from trace elements following soil ingestion by children exposed to playgrounds, parks and picnic areas. Journal of Hazardous Materials, 182, 656–664. https://doi.org/10.1016/j.jhazmat.2010.06.082.

    Article  CAS  Google Scholar 

  • Huang, X., Hu, J., Qin, F., Quan, W., Cao, R., Fan, M., et al. (2017). Heavy metal pollution and ecological assessment around the Jinsha coal-fired power plant (China). International Journal of Environmental Research and Public Health, 14(12), 1589. https://doi.org/10.3390/ijerph14121589.

    Article  CAS  Google Scholar 

  • IARC. (2019). IARC monographs on the evaluation of carcinogenic risks to humans. Retrieved December 15, 2019, from https://monographs.iarc.fr/list-of-classifications.

  • ISO 10390:2005. (2005) Soil quality—Determination of pH.

  • IUSS Working Group WRB. (2015). World reference base of soil resources 2014, update 2015 international soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports no. 106. Rome: FAO.

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants (4th ed.). Boca Raton: CRC Press Taylor & Francis Group. https://doi.org/10.1201/b10158.

    Book  Google Scholar 

  • Kasimov, N. S., & Vlasov, D. V. (2015). Clarkes of chemical elements as comparison standards in ecogeochemistry. Vestnik Moskovskogo Universiteta. Seria 5, Geografia, 2, 7–17. (in Russian).

    Google Scholar 

  • Kazakov, K. (2019). Climate of Rostov-on-Don. Retrieved November 22, 2019, from https://www.pogodaiklimat.ru/climate/34730.htm. (in Russian).

  • Konstantinov, A., Novoselov, A., Konstantinova, E., Loiko, S., Kurasova, A., & Minkina, T. (2020). Composition and properties of soils developed within the ash disposal areas originated from peat combustion (Tyumen, Russia). Soil Science Annual, 71(1), 3–14. https://doi.org/10.37501/soilsa/121487.

    Article  Google Scholar 

  • Konstantinova, E., Minkina, T., Sushkova, S., Konstantinov, A., Rajput, V. D., & Sherstnev, A. (2019). Urban soil geochemistry of an intensively developing Siberian city: A case study of Tyumen, Russia. Journal of Environmental Management, 239, 366–375. https://doi.org/10.1016/j.jenvman.2019.03.095.

    Article  CAS  Google Scholar 

  • Kowalska, J. B., Mazurek, R., Gasiorek, M., & Zaleski, T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination—A review. Environmental Geochemistry and Health, 40, 2395–2420. https://doi.org/10.1007/s10653-018-0106-z.

    Article  CAS  Google Scholar 

  • Krechetov, P., Kostin, A., Chernitsova, O., & Terskaya, E. (2019). Environmental changes due to wet disposal of wastes from coal-fired heat power plant: A case study from the Tula Region, Central Russia. Applied Geochemistry, 105, 105–113. https://doi.org/10.1016/j.apgeochem.2019.04.017.

    Article  CAS  Google Scholar 

  • Lemly, A. D. (1996). Evaluation of the hazard quotient method for risk assessment of selenium. Ecotoxicology and Environmental Safety, 35, 156–162.

    Article  CAS  Google Scholar 

  • Linnik, V. G., Minkina, T. M., Bauer, T. V., Saveliev, A. A., & Mandzhieva, S. S. (2019). Geochemical assessment and spatial analysis of heavy metals pollution around coal-fired power station. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-019-00361-z.

    Article  Google Scholar 

  • Mandzhieva, S. S., Goncharova, L Yu, Batukaev, A. A., Minkina, T. M., Bauer, T. V., Shertnev, A. K., et al. (2017). Current state of haplic chernozems in specially protected natural areas of the steppe zone. OnLine Journal of Biological Sciences, 17(4), 363–371. https://doi.org/10.3844/ojbsci.2017.363.371.

    Article  CAS  Google Scholar 

  • Minkina, T. M., Mandzhieva, S. S., Burachevskaya, M. V., Bauer, T. V., & Sushkova, S. N. (2018). Method of determining loosely bound compounds of heavy metals in the soil. MethodsX, 5, 217–226. https://doi.org/10.1016/j.mex.2018.02.007.

    Article  Google Scholar 

  • Minkina, T. M., Nevidomskaya, D. G., Pol’shina, T. N., Fedorov, Y. A., Mandzhieva, S. S., Chaplygin, V. A., et al. (2017). Heavy metals in the soil-plant system of the Don River estuarine region and the Taganrog Bay coast. Journal of Soils and Sediments, 17, 1474–1491. https://doi.org/10.1007/s11368-016-1381-x.

    Article  Google Scholar 

  • Minnikova, T. V., Denisova, T. V., Mandzhieva, S. S., Kolesnikov, S. I., Minkina, T. M., Chaplygin, V. A., et al. (2017). Assessing the effect of heavy metals from the Novocherkassk power station emissions on the biological activity of soils in the adjacent areas. Journal of Geochemical Exploration, 174, 70–78. https://doi.org/10.1016/j.gexplo.2016.06.007.

    Article  CAS  Google Scholar 

  • Minprirody of the Rostov Oblast (Ministry of Natural Resources and Ecology of the Rostov Oblast). (2019). Ecological bulletin of Don “On the state of the environment and natural resources of the Rostov region in 2018”. Rostov-on-Don: Ministry of Natural Resources and Ecology of the Rostov Oblast. (in Russian).

    Google Scholar 

  • MU 2.1.7.730-99. (1999). Hygienic evaluation of soil in residential areas. Methodological Instructive Regulations (approved by Russian Federation Chief Public Health Officer 07 February 1999). Moscow: Ministry of Health of the Russian Federation (in Russian).

  • Müller, G. (1986). Schadstoffe in sedimenten—sedimente als schadstoffe. Mitteilungen der Österreichischen Geologischen Gesellschaft, 79, 107–126. (in German).

    Google Scholar 

  • Nemerow, L. N. (1974). Scientific stream pollution analysis. Washington: Scripta Book Co.

    Google Scholar 

  • Noli, F., & Tsamos, P. (2016). Concentration of heavy metals and trace elements in soils, waters and vegetables and assessment of health risk in the vicinity of a lignite-fired power plant. Science of The Total Environment, 563–564, 377–385. https://doi.org/10.1016/j.scitotenv.2016.04.098.

    Article  CAS  Google Scholar 

  • Nriagu, J. (2011). Zinc toxicity in humans. In J. O. Nriagu (Ed.), Encyclopedia of environmental health (pp. 500–508). Oxford: Elsevier.

    Google Scholar 

  • OEHHA (California Office of Environmental Health Hazard Assessment). (2012). Air toxics hot spots program risk assessment guidelines. Technical support document for exposure assessment and stochastic analysis. Final. Oakland: Office of Environmental Health Hazard Assessment.

  • OEHHA (California Office of Environmental Health Hazard Assessment). (2019). Chemical database. Retrieved November 27, 2019, from https://oehha.ca.gov/chemicals.

  • OST 10-259-2000. (2001). Soil. X-ray fluorescence determination of the total content of heavy metals. Moscow: The Russian Federation Ministry of Agriculture (in Russian).

  • Pandey, V. C. (2015). Assisted phytoremediation of fly ash dumps through naturally colonized plants. Ecological Engineering, 82, 1–5. https://doi.org/10.1016/j.ecoleng.2015.04.002.

    Article  Google Scholar 

  • Piersanti, A., Adani, M., Briganti, G., Cappelletti, A., Ciancarella, L., Cremona, G., et al. (2018). Air quality modeling and inhalation health risk assessment for a new generation coal-fired power plant in Central Italy. Science of The Total Environment, 644, 884–898. https://doi.org/10.1016/j.scitotenv.2018.06.393.

    Article  CAS  Google Scholar 

  • Rahman, I. M. M., & Begum, Z. A. (2019). Introductory chapter: How to assess metal contamination in soils? In Z. A. Begum, I. M. M. Rahman, & H. Hasegawa (Eds.), Metals in soil—Contamination and remediation (pp. 1–9). Rijeka: IntechOpen. https://doi.org/10.5772/intechopen.84979

    Chapter  Google Scholar 

  • RD 52.18.289-90. (1990). Guidelines. Methods for measuring the mass fraction of mobile forms of metals (copper, lead, zinc, nickel, cadmium, cobalt, chromium, manganese) in soil samples by atomic absorption analysis (approved by Governm. USSR Committee for Hydrometeorology 04 October 1989). Moscow: Goscomgidromet (in Russian).

  • Reimann, C., & Garrett, R. G. (2005). Geochemical background—Concept and reality. Science of The Total Environment, 350, 12–27. https://doi.org/10.1016/j.scitotenv.2005.01.047.

    Article  CAS  Google Scholar 

  • RIVM (Netherlands National Institute for Public Health and the Environment). (2001). Re-evaluation of human-toxicological maximum permissible risk levels. (RIVM report 711701 025). Bilthoven: Rijksinstituut voor Volksgezondheid en Milieu (RIVM).

  • Rospotrebnadzor of Rostov Oblast (Rostov regional office of the Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing). (2019). Report on the state of sanitary and epidemiological welfare of the population of the Rostov region in 2018. Rostov-on-Don: Rospotrebnadzor of Rostov Oblast. (in Russian).

    Google Scholar 

  • Soil Survey Staff. (2011). Soil survey laboratory information manual. Soil survey investigations report No. 45, version 2.0. Linkoln: Department of Agriculture, Natural Resources Conservation Service.

  • Tang, Q., Liu, G., Zhou, C., Zhang, H., & Sun, R. (2013). Distribution of environmentally sensitive elements in residential soils near a coal-fired power plant: Potential risks to ecology and children’s health. Chemosphere, 93(10), 2473–2479. https://doi.org/10.1016/j.chemosphere.2013.09.015.

    Article  CAS  Google Scholar 

  • US EPA (US Environmental Protection Agency). (1989). Risk assessment guidance for superfund. Volume I: Human health evaluation manual (Part A). Interim Final. (EPA/540/1‐89/002). Washington, DC: Office of Emergency and Remedial Response.

  • US EPA (US Environmental Protection Agency). (2002). Supplemental guidance for developing soil screening levels for superfund sites. (OSWER 9355.4-24). Washington, DC: Office of Emergency and Remedial Response.

  • US EPA (US Environmental Protection Agency). (2011). Exposure factors handbook: 2011 edition. (EPA/600/R‐090/052F). Washington, DC: National Center for Environmental assessment.

  • US EPA (US Environmental Protection Agency). (2014). Human health evaluation manual, supplemental guidance: Update to standard default exposure factors. (OSWER 9200.1‐120). Washington, DC: National Center for Environmental assessment.

  • US EPA (US Environmental Protection Agency). (2019). IRIS assessments. Retrieved December 15, 2019, from https://cfpub.epa.gov/ncea/iris_drafts/AtoZ.cfm.

  • Vorobyova, L. A. (2006). Theory and practice of chemical analysis of soils. Moscow: GEOS. (in Russian).

    Google Scholar 

  • Youravong, N. (2011). Lead exposure and caries in children. In J. O. Nriagu (Ed.), Encyclopedia of environmental health (pp. 421–429). Oxford: Elsevier.

    Chapter  Google Scholar 

Download references

Acknowledgements

This study was funded by the Russian Foundation of Basic Research (Project Nos. 19-05-50097 and 19-34-60041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Minkina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minkina, T., Konstantinova, E., Bauer, T. et al. Environmental and human health risk assessment of potentially toxic elements in soils around the largest coal-fired power station in Southern Russia. Environ Geochem Health 43, 2285–2300 (2021). https://doi.org/10.1007/s10653-020-00666-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00666-4

Keywords

Navigation