Skip to main content
Log in

Possible New Envelope Types of Hot Jupiters

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract—For the case of the sub-Alfvén regime of the stellar wind flyby around the planet, the flow structure in the vicinity of a hot Jupiter have been studied by three-dimensional numerical simulation. As an example, the hot Jupiter HD 209458b was considered. The planet’s magnetic moment was set equal to 10% of the magnetic moment of Jupiter. The average magnetic field at the parent star’s surface was taken to be 0.5 G, corresponding to a relatively strong wind field. Under such conditions, calculations have shown that a quasi-closed ionospheric (gas) envelope with an induced shockless magnetosphere forms around a hot Jupiter. Under the influence of the strong magnetic field of stellar wind, envelope matter outflowing from the inner Lagrange point does not move along the ballistic trajectory, but rather moves along magnetic field lines of the wind toward the star. Therefore, for the sub-Alfvén flow regime, a new ionospheric envelope type of hot Jupiters is considered to be discovered, supplementing the classification suggested earlier based on results of purely gas-dynamic modeling. Possible distinctive features of the observational manifestations of such envelopes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. R. A. Murray-Clay, E. I. Chiang, and N. Murray, Astrophys. J. 693, 23 (2009).

    ADS  Google Scholar 

  2. M. Mayor and D. Queloz, Nature (London, U.K.) 378, 355 (1995).

    ADS  Google Scholar 

  3. D. Lai, C. Helling, and E. P. J. van den Heuvel, Astrophys. J. 721, 923 (2010).

    ADS  Google Scholar 

  4. S.-L. Li, N. Miller, D. N. C. Lin, and J. J. Fortney, Nature (London, U.K.) 463, 1054 (2010).

    ADS  Google Scholar 

  5. A. Vidal-Madjar, A. Lecavelier des Etangs, J.-M. Desert, G. E. Ballester, et al., Nature (London, U.K.) 422, 143 (2003).

    ADS  Google Scholar 

  6. A. Vidal-Madjar, A. Lecavelier des Etangs, J.-M. Desert, G. E. Ballester, et al., Astrophys. J. 676, L57 (2008).

    ADS  Google Scholar 

  7. L. Ben-Jaffel, Astrophys. J. 671, L61 (2007).

    ADS  Google Scholar 

  8. A. Vidal-Madjar, J.-M. Desert, A. Lecavelier des Etangs, G. Hebrard, et al., Astrophys. J. 604, L69 (2004).

    ADS  Google Scholar 

  9. L. Ben-Jaffel and S. Sona Hosseini, Astrophys. J. 709, 1284 (2010).

    ADS  Google Scholar 

  10. J. L. Linsky, H. Yang, K. France, C. S. Froning, et al., Astrophys. J. 717, 1291 (2010).

    ADS  Google Scholar 

  11. A. Lecavelier des Etangs, V. Bourrier, P. J. Wheatley, H. Dupuy, et al., Astron. Astrophys. 543, L4 (2012).

    ADS  Google Scholar 

  12. R. V. Yelle, Icarus 170, 167 (2004).

    ADS  Google Scholar 

  13. A. Garcia Munoz, Planet. Space Sci. 55, 1426 (2007).

    ADS  Google Scholar 

  14. T. T. Koskinen, M. J. Harris, R. V. Yelle, and P. Lavvas, Icarus 226, 1678 (2013).

    ADS  Google Scholar 

  15. D. E. Ionov, V. I. Shematovich, and Ya. N. Pavlyuchenkov, Astron. Rep. 61, 387 (2017).

    ADS  Google Scholar 

  16. D. V. Bisikalo, P. V. Kaigorodov, D. E. Ionov, and V. I. Shematovich, Astron. Rep. 57, 715 (2013).

    ADS  Google Scholar 

  17. A. A. Cherenkov, D. V. Bisikalo, and P. V. Kaigorodov, Astron. Rep. 58, 679 (2014).

    ADS  Google Scholar 

  18. D. V. Bisikalo and A. A. Cherenkov, Astron. Rep. 60, 183 (2016).

    ADS  Google Scholar 

  19. A. Cherenkov, D. Bisikalo, L. Fossati, and C. Möstl, Astrophys. J. 846, 31 (2017).

    ADS  Google Scholar 

  20. A. A. Cherenkov, D. V. Bisikalo, and A. G. Kosovichev, Mon. Not. R. Astron. Soc. 475, 605 (2018).

    ADS  Google Scholar 

  21. D. V. Bisikalo, A. A. Cherenkov, V. I. Shematovich, L. Fossati, and C. Mostl, Astron. Rep. 62, 648 (2018).

    ADS  Google Scholar 

  22. I. F. Shaikhislamov, M. L. Khodachenko, H. Lammer, K. G. Kislyakova, et al., Astrophys. J. 832, 173 (2016).

    ADS  Google Scholar 

  23. I. F. Shaikhislamov, M. L. Khodachenko, H. Lammer, A. G. Berezutsky, I. B. Miroshnichenko, and M. S. Rumenskikh, Mon. Not. R. Astron. Soc. 481, 5315 (2018).

    ADS  Google Scholar 

  24. I. F. Shaikhislamov, M. L. Khodachenko, H. Lammer, A. G. Berezutsky, I. B. Miroshnichenko, and M. S. Rumenskikh, Mon. Not. R. Astron. Soc. 491, 3435 (2020).

    ADS  Google Scholar 

  25. M. L. Khodachenko, I. F. Shaikhislamov, H. Lammer, K. G. Kislyakova, et al., Astrophys. J. 847, 126 (2017).

    ADS  Google Scholar 

  26. M. L. Khodachenko, I. F. Shaikhislamov, H. Lammer, A. G. Berezutsky, I. B. Miroshnichenko, M. S. Rumenskikh, K. G. Kislyakova, and N. K. Dwivedi, Astrophys. J. 885, 67 (2019).

    ADS  Google Scholar 

  27. J.-M. Grießmeier, A. Stadelmann, T. Penz, H. Lammer, et al., Astron. Astrophys. 425, 753 (2004).

    ADS  Google Scholar 

  28. A. Sanchez-Lavega, Astrophys. J. 609, L87 (2004).

    ADS  Google Scholar 

  29. A. A. Vidotto, M. Jardine, and Ch. Helling, Mon. Not. R. Astron. Soc. 411, L46 (2011).

    ADS  Google Scholar 

  30. K. G. Kislyakova, M. Holmstrom, H. Lammer, P. Odert, and M. L. Khodachenko, Science (Washington, DC, U. S.) 346, 981 (2014).

    ADS  Google Scholar 

  31. D. J. Stevenson, Rep. Prog. Phys. 46, 555 (1983).

    ADS  Google Scholar 

  32. A. P. Showman and T. Guillot, Astron. Astrophys. 385, 166 (2002).

    ADS  Google Scholar 

  33. K. Batygin, S. Stanley, and D. J. Stevenson, Astrophys. J. 776, 53 (2013).

    ADS  Google Scholar 

  34. T. M. Rogers and A. P. Showman, Astrophys. J. 782, L4 (2014).

    ADS  Google Scholar 

  35. T. M. Rogers and T. D. Komacek, Astrophys. J. 794, 132 (2014).

    ADS  Google Scholar 

  36. T. M. Rogers, Nat. Astron. 1, 0131 (2017).

  37. N. V. Erkaev, P. Odert, H. Lammer, K. G. Kislyakova, et al., Mon. Not. R. Astron. Soc. 470, 4330 (2017).

    ADS  Google Scholar 

  38. T. T. Koskinen, J. Y.-K. Cho, N. Achilleos, and A. D. Aylward, Astrophys. J. 722, 178 (2010).

    ADS  Google Scholar 

  39. G. B. Trammell, P. Arras, and Z.-Y. Li, Astrophys. J. 728, 152 (2011).

    ADS  Google Scholar 

  40. I. F. Shaikhislamov, M. L. Khodachenko, Y. L. Sasunov, H. Lammer, et al., Astrophys. J. 795, 132 (2014).

    ADS  Google Scholar 

  41. M. L. Khodachenko, I. F. Shaikhislamov, H. Lammer, and P. A. Prokopov, Astrophys. J. 813, 50 (2015).

    ADS  Google Scholar 

  42. G. B. Trammell, Z.-Y. Li, and P. Arras, Astrophys. J. 788, 161 (2014).

    ADS  Google Scholar 

  43. T. Matsakos, A. Uribe, and A. Konigl, Astron. Astrophys. 578, A6 (2015).

    ADS  Google Scholar 

  44. A. S. Arakcheev, A. G. Zhilkin, P. V. Kaigorodov, D. V. Bisikalo, and A. G. Kosovichev, Astron. Rep. 61, 932 (2017).

    ADS  Google Scholar 

  45. D. V. Bisikalo, A. S. Arakcheev, and P. V. Kaigorodov, Astron. Rep. 61, 925 (2017).

    ADS  Google Scholar 

  46. A. G. Zhilkin and D. V. Bisikalo, Astron. Rep. 63, 550 (2019).

    ADS  Google Scholar 

  47. E. S. Belen’kaya, Phys. Usp. 52, 765 (2009).

    ADS  Google Scholar 

  48. C. T. Russell, Rep. Prog. Phys. 56, 687 (1993).

    ADS  Google Scholar 

  49. W.-H. Ip, A. Kopp, and J. H. Hu, Astrophys. J. 602, L53 (2004).

    ADS  Google Scholar 

  50. P. V. Kaigorodov, E. A. Ilyina, and D. V. Bisikalo, Astron. Rep. 63, 365 (2019).

    ADS  Google Scholar 

  51. A. G. Zhilkin, D. V. Bisikalo, and P. V. Kaigorodov, Astron. Rep. 64, 159 (2020).

    ADS  Google Scholar 

  52. A. G. Zhilkin, D. V. Bisikalo, and P. V. Kaigorodov, Astron. Rep. 64, 259 (2020).

    ADS  Google Scholar 

  53. M. J. Owens and R. J. Forsyth, Liv. Rev. Solar Phys. 10, 5 (2013).

    ADS  Google Scholar 

  54. E. N. Parker, Astrophys. J. 128, 664 (1958).

    ADS  Google Scholar 

  55. E. J. Weber and L. Davis, Jr., Astrophys. J. 148, 217 (1967).

    ADS  Google Scholar 

  56. V. B. Baranov and K. V. Krasnobaev, Hydrodynamic Theory of Cosmic Plasma (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  57. R. S. Steinolfson and F. J. Hundhausen, J. Geophys. Res. 93 (A12), 14269 (1988).

    ADS  Google Scholar 

  58. I. I. Roussev, T. I. Gombosi, and I. V. Sokolov, Astrophys. J. 595, L57 (2003).

    ADS  Google Scholar 

  59. T. L. Totten, J. W. Freeman, and S. Arya, J. Geophys. Res. 100, 13 (1995).

    ADS  Google Scholar 

  60. G. L. Withbroe, Astrophys. J. 325, 442 (1988).

    ADS  Google Scholar 

  61. J. C. Brandt, C. Wolff, and J. P. Cassinelli, Astrophys. J. 156, 1117 (1969).

    ADS  Google Scholar 

  62. T. Sakurai, Solar Phys. 76, 301 (1982).

    ADS  Google Scholar 

  63. M. L. Goelzer, N. A. Schwadron, and C. W. Smith, J. Geophys. Res. Space Phys. 119, 115 (2014).

    ADS  Google Scholar 

  64. D. Fabbian, R. Simoniello, R. Collet, S. Criscuoli, et al., Astron. Nachr. 338, 753 (2017).

    ADS  Google Scholar 

  65. H. Lammer, M. Güdel, Y. Kulikov, I. Ribas, et al., Earth, Planets Space 64, 179 (2012).

    ADS  Google Scholar 

  66. D. V. Bisikalo, A. G. Zhilkin, and A. A. Boyarchuk, Gas Dynamics of Close Binary Stars (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

  67. A. G. Zhilkin, D. V. Bisikalo, and A. A. Boyarchuk, Phys. Usp. 55, 115 (2012).

    ADS  Google Scholar 

  68. T. Tanaka, J. Comp. Phys. 111, 381 (1994).

    ADS  Google Scholar 

  69. K. G. Powell, P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. de Zeeuw, J. Comp. Phys. 154, 284 (1999).

    ADS  Google Scholar 

  70. D. Charbonneau, T. M. Brown, D. W. Latham, and M. Mayor, Astrophys. J. 529, L45 (2000).

    ADS  Google Scholar 

  71. M. L. Khodachenko, I. F. Shaikhislamov, H. Lammer, A. G. Berezutsky, I. B. Miroshnichenko, and M. S. Rumenskikh, Astrophys. J. 885, 67 (2020).

    ADS  Google Scholar 

  72. S. Awiphan, E. Kerins, S. Pichadee, S. Komonjinda, et al., Mon. Not. R. Astron. Soc. 463, 2574 (2016).

    ADS  Google Scholar 

  73. L. E. Elsgolts, Differential Equations and the Calculus of Variations (Univ. Press of the Pacific, Honolulu, HI, 2003; Nauka, Moscow, 1969).

Download references

ACKNOWLEDGMENTS

The authors acknowledge P.V. Kaigorodov and V.I. She-matovich for important comments and helpful discussions. For the study, the facilities of the collective usage center “The complex for modeling and processing the data of the mega-class scientific equipment” of the Scientific Center “Kurchatov Institute” (http://ckp.nrcki.ru/), as well as of the Interdepartamental computer cluster of the Russian Academy of Sciences, were used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Zhilkin.

Ethics declarations

The study was supported by Russian Science Foundation (project No. 18-12-00447).

Additional information

Translated by L. Yungelson

THE COMPUTATION METHOD OF THE STELLAR WIND PARAMETERS

THE COMPUTATION METHOD OF THE STELLAR WIND PARAMETERS

Some simple transformations allow the following expressions to be obtained from Eqs. (1)(5)

$$\begin{gathered} (v_{r}^{2} - u_{S}^{2})(v_{r}^{2} - u_{F}^{2})\frac{{d{{v}_{r}}}}{{dr}} \\ = \frac{{{{v}_{r}}}}{r}\left[ {(v_{r}^{2} - u_{A}^{2})\left( {2c_{s}^{2} + v_{\varphi }^{2} - \frac{{G{{M}_{{\text{s}}}}}}{r}} \right) + 2{{v}_{r}}{{u}_{A}}{{v}_{\varphi }}{{u}_{\varphi }}} \right], \\ \end{gathered} $$
(22)

with notation

$${{u}_{S}} = \mathop {\left\{ {\frac{1}{2}\left[ {c_{s}^{2} + {{a}^{2}} - \sqrt {{{{(c_{s}^{2} + {{a}^{2}})}}^{2}} - 4c_{s}^{2}u_{A}^{2}} } \right]} \right\}}\nolimits^{1/2} ,$$
(23)
$${{u}_{F}} = \mathop {\left\{ {\tfrac{1}{2}\left[ {c_{s}^{2} + {{a}^{2}} + \sqrt {{{{(c_{s}^{2} + {{a}^{2}})}}^{2}} - 4c_{s}^{2}u_{A}^{2}} } \right]} \right\}}\nolimits^{1/2} ,$$
(24)
$${{a}^{2}} = \tfrac{{B_{r}^{2} + B_{\varphi }^{2}}}{{4\pi \rho }},$$
(25)
$${{u}_{\varphi }} = \tfrac{{{{B}_{\varphi }}}}{{\sqrt {4\pi \rho } }}.$$
(26)

The values \({{u}_{S}}\) and \({{u}_{F}}\) determine the values of slow and fast magnetosonic velocities, respectively. From Eq. (22), it can be seen that there are two singular points in the solution: the slow magnetosonic one \(r = {{r}_{S}}\), where velocity is \({{v}_{r}} = {{u}_{S}}\), and the fast magnetosonic one, \(r = {{r}_{F}}\), where velocity \({{v}_{r}} = {{u}_{F}}\). In these points, the coefficient of the derivative \(d{{v}_{r}}{\text{/}}dr\) vanishes. In order for the solution to remain smooth, the right-hand side of Eq. (22) must also vanish at these points. However, as it will be seen below, the Alfvén point \(r = {{r}_{A}}\), where wind velocity \({{v}_{r}} = {{u}_{A}}\), is also a singular solution point.

We will set boundary conditions by the values of velocity \({{{v}}_{0}}\), density \({{\rho }_{0}}\), and temperature \({{T}_{0}}\) in a certain point \({{r}_{0}}\). These values allow the computations of the constants

$${{c}_{0}} = \sqrt {\frac{{2{{k}_{{\text{B}}}}{{T}_{0}}}}{{{{m}_{{\text{p}}}}}}} ,$$
(27)
$$\dot {M} = 4\pi r_{0}^{2}{{\rho }_{0}}{{{v}}_{0}}.$$
(28)

The last expression follows from the mass conservation law (8). The value \(\dot {M}\) defines mass-loss rate via stellar wind. Let us denote the density and temperature in the Alfvén point as \({{\rho }_{A}}\) and \({{v}_{A}}\), respectively. Then, with account of (28), we obtain

$$\dot {M} = 4\pi r_{A}^{2}{{\rho }_{A}}{{v}_{A}}.$$
(29)

Expression (29) allows one to find

$${{\rho }_{A}} = \frac{1}{{4\pi }}\mathop {\left( {\frac{{\dot {M}}}{{r_{0}^{2}{{B}_{0}}}}} \right)}\nolimits^2 ,$$
(30)

where \({{B}_{0}} = {{B}_{{\text{s}}}}{{({{R}_{{\text{s}}}}{\text{/}}{{r}_{0}})}^{2}}\) is the strength of the radial magnetic field in the point \({{r}_{0}}\).

Let us introduce dimensionless values \({{x}_{A}} = {{r}_{A}}{\text{/}}{{r}_{0}}\) and \({{y}_{A}} = {{{v}}_{A}}{\text{/}}{{{v}}_{0}}\). It is easy to verify that the relation

$${{y}_{A}} = \frac{\beta }{{x_{A}^{2}}},$$
(31)

where

$$\beta = \frac{{{{B}_{0}}}}{{{{v}_{0}}\sqrt {4\pi {{\rho }_{A}}} }}$$
(32)

is correct.

To solve the equations, it is convenient to rewrite them in the dimensionless form. For this, let us introduce dimensionless variables \(\xi = r{\text{/}}{{r}_{A}}\) and \(\eta = {{{v}}_{r}}{\text{/}}{{{v}}_{A}}\). Then, the Alfvén Mach number (18) is \(\lambda = \xi \sqrt \eta \). Additionally, we introduce

$$z = \mathop {\left( {\frac{\rho }{{{{\rho }_{0}}}}} \right)}\nolimits^{0.5(\gamma - 1)} = \mathop {(\beta {{\lambda }^{2}})}\nolimits^{0.5(1 - \gamma )} .$$
(33)

In dimensionless units, Eq. (22) becomes

$$\frac{{d\eta }}{{d\xi }} = \frac{{\eta Y}}{{\xi X}},$$
(34)

where

$$X = {{({{\lambda }^{2}} - 1)}^{3}}(y_{A}^{2}{{\eta }^{2}} - \alpha {{z}^{2}}){{\xi }^{2}} - \omega {{\lambda }^{4}}x_{A}^{2}{{({{\xi }^{2}} - 1)}^{2}},$$
(35)
$$\begin{gathered} Y = {{({{\lambda }^{2}} - 1)}^{3}}\left( {2\alpha \xi {{z}^{2}} - \frac{\mu }{{{{x}_{A}}}}} \right)\xi \\ + \;\omega x_{A}^{2}({{\lambda }^{2}} - {{\xi }^{2}})({{\lambda }^{4}} - 3{{\lambda }^{2}}{{\xi }^{2}} + {{\lambda }^{2}} + {{\xi }^{2}}), \\ \end{gathered} $$
(36)
$$\alpha = \frac{{c_{0}^{2}}}{{v_{0}^{2}}},$$
(37)
$$\mu = \frac{{G{{M}_{{\text{s}}}}}}{{{{r}_{0}}v_{0}^{2}}},$$
(38)
$$\omega = \frac{{{{\Omega }_{{\text{s}}}}r_{0}^{2}}}{{v_{0}^{2}}}.$$
(39)

As noted above, slow magnetosonic (\(\xi = {{\xi }_{S}}\), \(\eta = {{\eta }_{S}}\)) and fast magnetosonic (\(\xi = {{\xi }_{F}}\), \(\eta = {{\eta }_{F}}\)) points are singular. However, obtained expressions show that in the solution Alfvén point (\(\xi = 1\), \(\eta = 1\)) also is singular, since \(X\) and \(Y\) also simultaneously become equal to zero. Let us write energy integral (9) in the dimensionless form too:

$$\begin{gathered} E = \frac{{y_{A}^{2}{{\eta }^{2}}}}{2} + \frac{{\alpha {{z}^{2}}}}{{\gamma - 1}} - \frac{\mu }{{{{x}_{A}}\xi }} \\ + \;\frac{{\omega x_{A}^{2}}}{{2{{\xi }^{2}}{{{({{\lambda }^{2}} - 1)}}^{2}}}}[{{\lambda }^{4}} + (2{{\lambda }^{2}} - 1)({{\xi }^{2}} - 2){{\xi }^{2}}]. \\ \end{gathered} $$
(40)

Then, in point \({{r}_{0}}\), \({{\xi }_{0}} = 1{\text{/}}{{x}_{A}}\), \({{\eta }_{0}} = 1{\text{/}}{{y}_{A}}\), \({{\lambda }_{0}} = 1{\text{/}}\sqrt \beta \). Therefore, in this point Eq. (40) becomes:

$$\begin{gathered} E = \frac{1}{2} + \frac{\alpha }{{\gamma - 1}} - \mu + \frac{\omega }{{2{{{(\lambda _{0}^{2} - 1)}}^{2}}}} \\ \times \;[\lambda _{0}^{4}x_{A}^{4} + (2\lambda _{0}^{2} - 1)(1 - 2x_{A}^{2})]. \\ \end{gathered} $$
(41)

As unknown values in the solution, we will use \({{\xi }_{S}}\), \({{\eta }_{S}}\), \({{\xi }_{F}}\), \({{\eta }_{F}}\), \({{x}_{A}}\), \(E\), and \(\gamma \). Altogether, there are 7 unknowns. The system of equations contains four equations \(X = 0\), \(Y = 0\) in the points \({{\xi }_{S}}\) and \({{\xi }_{F}}\), two equations (40), for the points \({{\xi }_{S}}\) and \({{\xi }_{F}}\), and Eq. (41). This system of nonlinear algebraic equations may be solved by iterations.

As boundary conditions, the values of the solar wind parameters at the point \({{r}_{0}} = 10\,{{R}_{ \odot }}\) [60] are used: velocity \({{v}_{0}} = 100\) km/s, density \({{\rho }_{0}} = 2.34 \times {{10}^{{ - 21}}}\) g/cm3 (corresponding numerical density \({{n}_{0}} = 1400\) cm–3), temperature \({{T}_{0}} = 7.3 \times {{10}^{5}}\) K. The star HD 209458 has mass \({{M}_{{\text{s}}}} = 1.1\;{{M}_{ \odot }}\) and radius \({{R}_{{\text{s}}}} = 1.2\;{{R}_{ \odot }}\). Angular velocity of stellar rotation is \({{\Omega }_{{\text{s}}}} = 5.05 \times {{10}^{{ - 6}}}\) s–1, which corresponds to the linear velocity at the equator \({{v}_{{{\text{rot}}}}} = 4.2\) km/s. The magnetic field at the stellar surface was equal to \({{B}_{{\text{s}}}} = 0.5\) G, which corresponds to the magnitude of the average magnetic field at the Sun’s surface in a quiet state.

From this, the following parameters values are obtained: outflow rate \(\dot {M} = 1.43 \times {{10}^{{11}}}\;{\text{g/s}} = 2.26 \times \)\({{10}^{{ - 15}}}\,{{M}_{ \odot }}{\text{/yr}}\), the density at the Alfvén point ρA = \(1.33 \times {{10}^{{ - 22}}}\) g/cm3, dimensionless quantities α = 1.205, \(\beta = 17.617\), \(\mu = 2.098\), \(\omega = 0.123\). It is important to note that the rate of stellar mass loss \(\dot {M}\) in our stellar wind model is only one of its parameters. It does not coincide with the real rate of mass loss, since the problem only in the plane of the planetary orbit was solved. Since the real wind is not spherically-symmetric, these values ​​can vary by several factors. The calculation results of the wind structure are presented in Fig. 9. A family of integral curves corresponding to the various types of solutions is shown. Some of these curves pass through the singular points whose positions are indicated by circles. Here, the Alfvén singular point in the plane of variables (\(\xi \), \(\eta \)) has coordinates (1, 1). As a solution corresponding to the stellar wind, it is necessary to use the integral curve passing through all three singular points. The dependence \(\eta (\xi )\) for this curve can be obtained solving numerically Eq. (40) for various coordinates \(\xi \), substituting the found values ​​of \({{x}_{A}}\) and \(E\). The corresponding curve in Fig. 9 is shown in bold.

Fig. 9.
figure 9

Integral curves corresponding to the various types of solutions for magnetohydrodynamic stellar wind. Singular points are indicated by circles. The Alfvén singular point has coordinates (1, 1). The bold line corresponds to the solution passing through all three singular points. The right panel shows the neighborhood of the Alfvén point.

The system’s numerical solution of nonlinear algebraic equations describing the structure of stellar wind gives the following coordinates of the magnetosonic singular points: \({{\xi }_{S}} = 0.307\), \({{\eta }_{S}} = 0.467\), \({{\xi }_{F}} = 1.065\), \({{\eta }_{F}} = 1.026\). The left panel of Fig. 9 shows that the slow magnetosonic point is a singular point of the “saddle” type (see, for example, [73]). The fast magnetosonic point is located close to the Alfvén point, the vicinity of which is shown enlarged in the right panel of Fig. 9. It can be seen that the fast magnetosonic point is also a singular point of the “saddle” type. The Alfvén singular point has a more complex topology, since it has a higher singularity order. For the Alfvén point, the value \({{x}_{A}} = 2.748\) that corresponds to the radius \({{r}_{A}} = 27.48\,{{R}_{ \odot }}\) was obtained. The adiabatic index turned out to be equal to \(\gamma = 1.004\). Thus, the stellar wind in the vicinity of the hot Jupiter can be considered as almost isothermal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhilkin, A.G., Bisikalo, D.V. Possible New Envelope Types of Hot Jupiters. Astron. Rep. 64, 563–577 (2020). https://doi.org/10.1134/S1063772920080090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772920080090

Navigation