Skip to main content
Log in

Probabilistic Seismic Resilience-Based Cost–Benefit Analysis for Bridge Retrofit Assessment

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper explores a probabilistic resilience-based cost–benefit model that can be used to identify the best retrofit measures for bridges. In the model, the increase in resilience is considered to be the benefit of seismic retrofit. A bridge functionality assessment model is also proposed to evaluate resilience. The functionality is estimated based on the appropriate seismic loss and exponential recovery function models. Then, the functionality assessment model is validated with the field data of the post-earthquake recovery process of bridges. The whole proposed methodology is applied to a non-seismically designed multi-span simply supported concrete girder bridge located in Charleston. Seven retrofit measures, including steel jackets, seat extenders and elastomeric isolation bearings, are applied to the as-built bridge in order to assess their cost-effectiveness. The results show that the cost-effectiveness of retrofit measures varies with the ground motion intensity, and the best retrofit is seat extenders followed by elastomeric isolation bearings when considering the seismic hazard of Charleston. Sensitivity analysis is also performed to identify major uncertain parameters to which the resilience-based cost–benefit ratios are most sensitive. Statistical analysis of resilience-based cost–benefit ratios obtained through random sampling of major uncertain parameters reveals that normal distribution can be used to describe their uncertain nature. The 90% confidence intervals of resilience-based cost–benefit ratios estimated from random sampling also indicate the high cost-effectiveness of seat extenders and elastomeric isolation bearings to enhance bridge performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ding, J.; Jiang, S.; Bao, F.: Review of seismic damage to bridges in Tangshan earthquake. World Earthq. Eng. 22, 68–71 (2006)

    Google Scholar 

  2. Wang, D.; Guo, X.; Sun, Z.; Meng, Q.; Yu, D.; Li, X.: Damage to highway bridges during Wenchuan earthquake. Earthq. Eng. Eng. Dyn. 29, 84–94 (2009)

    Google Scholar 

  3. Sarno, L.D.; Porto, F.D.; Guerrini, G.; Calvi, P.M.; Camata, G.; Prota, A.: Seismic performance of bridges during the 2016 Central Italy earthquakes. Bull. Earthq. Eng. 17, 5729–5761 (2019). https://doi.org/10.1007/s10518-018-0419-4

    Article  Google Scholar 

  4. Lin, M.; Chen, P.; Tsai, K.; Yu, Y.; Liu, J.: Seismic steel jacketing of rectangular RC bridge columns for the mitigation of lap-splice failures. Earthq. Eng. Struct. Dyn. 39, 1687–1710 (2015)

    Article  Google Scholar 

  5. Fouché, P.; Bruneau, M.; Chiarito, V.P.: Modified steel-jacketed columns for combined blast and seismic retrofit of existing bridge columns. J. Bridge Eng. 21, 04016035 (2016)

    Article  Google Scholar 

  6. Jara, J.M.; Olmos, B.A.; Jara, M.; Conejo, W.M.: RC jacketing parameters to retrofit highway bridges. Bull. Earthq. Eng. 14, 2859–2880 (2016)

    Article  Google Scholar 

  7. Tubaldi, E.; Mitoulis, S.A.; Ahmadi, H.; Muhr, A.: A parametric study on the axial behaviour of elastomeric isolators in multi-span bridges subjected to horizontal seismic excitations. Bull. Earthq. Eng. 14, 1285–1310 (2016)

    Article  Google Scholar 

  8. Han, Q.; Wen, J.; Du, X.; Zhong, Z.; Hao, H.: Simplified seismic resistant design of base isolated single pylon cable-stayed bridge. Bull. Earthq. Eng. 16, 5041–5059 (2018)

    Article  Google Scholar 

  9. Shrestha, B.; Hong, H.; Bi, K.: Seismic response analysis of multiple-frame bridges with unseating restrainers considering ground motions spatial variation and SSI. Adv. Struct. Eng. 18, 873–891 (2015)

    Article  Google Scholar 

  10. Guo, J.J.; Zhong, J.; Dang, X.Z.; Yuan, W.C.: Seismic performance assessment of a curved bridge equipped with a new type spring restrainer. Eng. Struct. 151, 105–114 (2017)

    Article  Google Scholar 

  11. Wright, T.; DesRoches, R.; Padgett, J.E.: Bridge seismic retrofitting practices in the central and southeastern United States. J. Bridge Eng. 16, 82–92 (2011)

    Article  Google Scholar 

  12. Bazaez, R.; Dusicka, P.: Performance assessment of multi-column RC bridge bents seismically retrofitted with buckling-restrained braces. Bull. Earthq. Eng. 16, 2135–2160 (2018)

    Article  Google Scholar 

  13. Mondoro, A.; Frangopol, D.M.: Risk-based cost-benefit analysis for the retrofit of bridges exposed to extreme hydrologic events considering multiple failure modes. Eng. Struct. 159, 310–319 (2018)

    Article  Google Scholar 

  14. Dong, Y.; Frangopol, D.M.: Probabilistic life-cycle cost-benefit analysis of portfolios of buildings under flood hazard. Eng. Struct. 142, 290–299 (2017)

    Article  Google Scholar 

  15. Vitiello, U.; Asprone, D.; Ludovico, M.D.; Prota, A.: Life-cycle cost optimization of the seismic retrofit of existing RC structures. Bull. Earthq. Eng. 15, 2245–2271 (2017)

    Article  Google Scholar 

  16. Kijewski-Correa, T.; Taflanidis, A.A.: The Haitian housing dilemma: can sustainability and hazard-resilience be achieved? Bull. Earthq. Eng. 10, 765–771 (2012)

    Article  Google Scholar 

  17. Ouyang, M.; Dueñas-Osorio, L.; Min, X.: A three-stage resilience analysis framework for urban infrastructure systems. Struct. Saf. 36–37, 23–31 (2012)

    Article  Google Scholar 

  18. Lam, N.S.N.; Reams, M.; Li, K.; Li, C.; Mata, L.P.: Measuring community resilience to coastal hazards along the northern gulf of Mexico. Nat. Hazards Rev. 17, 04015013 (2016)

    Article  Google Scholar 

  19. Kilanitis, I.; Sextos, A.: Integrated seismic risk and resilience assessment of roadway networks in earthquake prone areas. Bull. Earthq. Eng. 17, 181–210 (2019). https://doi.org/10.1007/s10518-018-0457-y

    Article  Google Scholar 

  20. Nozhati, S.; Sarkale, Y.; Ellingwood, B.; Chong, E.K.P.; Mahmoud, H.: Near-optimal planning using approximate dynamic programming to enhance post-hazard community resilience management. Reliab. Eng. Syst. Saf. 181, 116–126 (2019)

    Article  Google Scholar 

  21. Venkittaraman, A.; Banerjee, S.: Enhancing resilience of highway bridges through seismic retrofit. Earthq. Eng. Struct. Dyn. 43, 1173–1191 (2014)

    Article  Google Scholar 

  22. Gidaris, I.; Padgett, J.E.; Barbosa, A.R.; Chen, S.; Cox, D.; Webb, B.; Cerato, A.: Multiple-hazard fragility and restoration models of highway bridges for regional risk and resilience assessment in the United States: state-of-the-art review. J. Struct. Eng. 143, 04016188 (2017)

    Article  Google Scholar 

  23. Bocchini, P.; Frangopol, D.M.: Optimal resilience- and cost-based postdisaster intervention prioritization for bridges along a highway segment. J. Bridge Eng. 17, 117–129 (2012). https://doi.org/10.1061/(ASCE)BE.1943-5592.0000201

    Article  Google Scholar 

  24. Padgett, J.E.: Seismic vulnerability assessment of retrofitted bridges using probabilistic methods. Georgia Institute of Technology, Atlanta, GA (2007)

    Google Scholar 

  25. Sun, Z.; Zou, Q.: The seismic vulnerability and restoration process of road bridges after an earthquake. South China J. Seismol. 19, 62–70 (1999)

    Google Scholar 

  26. Andrić, J.M.; Lu, D.-G.: Fuzzy methods for prediction of seismic resilience of bridges. Int. J. Disaster Risk Reduct. 22, 458–468 (2017). https://doi.org/10.1016/j.ijdrr.2017.01.001

    Article  Google Scholar 

  27. Minaie, E.; Moon, F.: Practical and simplified approach for quantifying bridge resilience. J. Infrastruct. Syst. 23, 04017016 (2017)

    Article  Google Scholar 

  28. Chandrasekaran, S.; Banerjee, S.: Retrofit optimization for resilience enhancement of bridges under multihazard scenario. J. Struct. Eng. 142, C4015012 (2016). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001396

    Article  Google Scholar 

  29. Padgett, J.E.; Dennemann, K.; Ghosh, J.: Risk-based seismic life-cycle cost–benefit (LCC-B) analysis for bridge retrofit assessment. Struct. Saf. 32, 165–173 (2010)

    Article  Google Scholar 

  30. Zhou, Y.; Banerjee, S.; Shinozuka, M.: Socio-economic effect of seismic retrofit of bridges for highway transportation networks: a pilot study. Struct. Infrastruct. Eng. 6, 145–157 (2010)

    Article  Google Scholar 

  31. Chang, S.E.; Shinozuka, M.: Measuring improvements in the disaster resilience of communities. Earthq. Spectra. 20, 739–755 (2004)

    Article  Google Scholar 

  32. Miles, S.B.; Chang, S.E.: Modeling community recovery from earthquakes. Earthq. Spectra. 22, 439–458 (2006)

    Article  Google Scholar 

  33. Cimellaro, G.P.; Reinhorn, A.M.; Bruneau, M.: Seismic resilience of a hospital system. Struct. Infrastruct. Eng. 6, 127–144 (2010)

    Article  Google Scholar 

  34. Chang, S.E.; Mcdaniels, T.; Fox, J.; Dhariwal, R.; Longstaff, H.: Toward disaster-resilient cities: characterizing resilience of infrastructure systems with expert judgments. Risk Anal. 34, 416–434 (2014)

    Article  Google Scholar 

  35. Cimellaro, G.P.; Pique, M.: Resilience of a hospital emergency department under seismic event. Adv. Struct. Eng. 19, 825–836 (2016)

    Article  Google Scholar 

  36. Cimellaro, G.P.; Reinhorn, A.M.; Bruneau, M.: Framework for analytical quantification of disaster resilience. Eng. Struct. 32, 3639–3649 (2010)

    Article  Google Scholar 

  37. Padgett, J.E.; Nielson, B.G.; DesRoches, R.: Selection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfolios. Earthq. Eng. Struct. Dyn. 37, 711–725 (2007)

    Article  Google Scholar 

  38. Padgett, J.E.; Desroches, R.: Methodology for the development of analytical fragility curves for retrofitted bridges. Earthq. Eng. Struct. Dyn. 37, 1157–1174 (2008)

    Article  Google Scholar 

  39. Kwon, O.-S.; Elnashai, A.S.: Fragility analysis of a highway over-crossing bridge with consideration of soil–structure interactions. Struct. Infrastruct. Eng. 6, 159–178 (2010)

    Article  Google Scholar 

  40. Nielson, B.G.: Analytical fragility curves for highway bridges in moderate seismic zones. Georgia Institute of Technology, Atlanta, GA (2005)

    Google Scholar 

  41. Decò, A.; Bocchini, P.; Frangopol, D.M.: A probabilistic approach for the prediction of seismic resilience of bridges. Earthq. Eng. Struct. Dyn. 42, 1469–1487 (2013). https://doi.org/10.1002/eqe.2282

    Article  Google Scholar 

  42. HAZUS: Earthquake loss estimation methodology. Federal Emergency Management Agency through agreements with National Institute of Building Science, Washington, DC (1999)

  43. Stein, S.M.; Young, G.K.; Trent, R.E.; Pearson, D.R.: Prioritizing scour vulnerable bridges using risk. J. Infrastruct. Syst. 5, 95–101 (1999). https://doi.org/10.1061/(ASCE)1076-0342(1999)5:3(95)

    Article  Google Scholar 

  44. Ayyub, B.M.: Systems resilience for multihazard environments: definition, metrics, and valuation for decision making. Risk Anal. 34, 340–355 (2014)

    Article  Google Scholar 

  45. Cimellaro, G.P.; Renschler, C.; Reinhorn, A.M.; Arendt, L.: PEOPLES: a framework for evaluating resilience. J. Struct. Eng. 142, 04016063 (2016)

    Article  Google Scholar 

  46. Jacques, C.C.; Mcintosh, J.; Giovinazzi, S.; Kirsch, T.D.; Wilson, T.; Mitrani-Reiser, J.: Resilience of the Canterbury hospital system to the 2011 Christchurch earthquake. Earthq. Spectra. 30, 533–554 (2014)

    Article  Google Scholar 

  47. GB18306-2015: Seismic ground motion parameters zonation map of China. In: General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Standardization Administration of the People’s Republic of China, Beijing (2015)

    Google Scholar 

  48. HAZUS-MH MR3: Multi-hazard loss estimation methodology—earthquake model. Department of Homeland Security., Washington, DC (2003)

    Google Scholar 

  49. Yang, C.-S.W.; Werner, S.D.; DesRoches, R.: Seismic fragility analysis of skewed bridges in the central southeastern United States. Eng. Struct. 83, 116–128 (2015). https://doi.org/10.1016/j.engstruct.2014.10.025

    Article  Google Scholar 

  50. Choi, E.; Park, J.; Yoon, S.-J.; Choi, D.-H.; Park, C.: Comparison of seismic performance of three restrainers for multiple-span bridges using fragility analysis. Nonlinear Dyn. 61, 83–99 (2010). https://doi.org/10.1007/s11071-009-9633-6

    Article  MATH  Google Scholar 

  51. Bruneau, M.; Chang, S.E.; Eguchi, R.T.; Lee, G.C.; O’Rourke, T.D.; Reinhorn, A.M.; Shinozuka, M.; Tierney, K.; Wallace, W.A.; von Winterfeldt, D.: A Framework to quantitatively assess and enhance the seismic resilience of communities. Earthq. Spectra. 19, 733–752 (2003)

    Article  Google Scholar 

  52. Mckay, M.D.: Latin hypercube sampling as a tool in uncertainty analysis of computer models. In: Proceedings of the 1992 Winter Simulation Conference, pp. 557–564. Arlington, Virginia, USA (1992)

Download references

Acknowledgements

The research is partially supported by the National Natural Science Foundation of China (Grant Number: 51878521). This support is particularly acknowledged. However, the views, findings, conclusions of the current research represent those of authors, and do not reflect the views of sponsors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Z., Gao, R. & Li, Y. Probabilistic Seismic Resilience-Based Cost–Benefit Analysis for Bridge Retrofit Assessment. Arab J Sci Eng 45, 8457–8474 (2020). https://doi.org/10.1007/s13369-020-04755-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04755-5

Keywords

Navigation