Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A lux-based Staphylococcus aureus bioluminescence screening assay for the detection/identification of antibiotics and prediction of antibiotic mechanisms

Abstract

The need for the discovery of new antibiotics and solving the antibiotic resistance problem requires rapid detection of antibiotics, identification of known antibiotics, and prediction of antibiotic mechanisms. The bacterial lux genes encode proteins that convert chemical energy into photonic energy and lead to bioluminescence. Exploiting this phenomenon, we constructed a lux-based bioluminescence system in Staphylococcus aureus by expressing lux genes under the control of stress-inducible chaperon promoters. When experiencing antibiotic stress, these constructed reporter strains showed clear bioluminescence response. Therefore, this bioluminescence screening system can be used for the detection of antibiotics in unknown chemical mixtures. Further analysis of bioluminescence response patterns showed that: (1) these bioluminescence response patterns are highly antibiotic specific and therefore can be used for rapid and cheap identification of antibiotics; and that (2) antibiotics having the same mechanism of action have similar bioluminescence patterns and therefore these patterns can be used for the prediction of mechanism for an unknown antibiotic with good sensitivity and specificity. With this bioluminescence screening assay, the discovery and analysis of new antibiotics can be promoted, which benefits in solving the antibiotic resistance problem.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang QQ, Ying GG, Pan CG, Liu YS, Zhao JL. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environ Sci Technol. 2015;49:6772–82.

    Article  CAS  PubMed  Google Scholar 

  2. Li L, et al. The genetic structures of an extensively drug resistant (XDR) Klebsiella pneumoniae and its plasmids. Front Cell Infect Microbiol. 2019;8:446.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Liu Y-Y, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16:161–8.

    Article  PubMed  Google Scholar 

  4. O’Neill J. Tackling drug-resistant infections globally: final report and recommendations. 2016.

  5. Li JWH, Vederas JC. Drug discovery and natural products: end of an era or an endless frontier? Science. 2009;325:161–5.

    Article  PubMed  Google Scholar 

  6. Baltz RH. Marcel Faber Roundtable: is our antibiotic pipeline unproductive because of starvation, constipation or lack of inspiration? J Ind Microbiol Biotechnol. 2006;33:507–13.

    Article  CAS  PubMed  Google Scholar 

  7. Greer LF, Szalay AA. Imaging of light emission from the expression of luciferases in living cells and organisms: a review. Luminescence. 2002;17:43–74.

    Article  CAS  PubMed  Google Scholar 

  8. Belas R, et al. Bacterial bioluminescence: isolation and expression of the luciferase genes from Vibrio harveyi. Science. 1982;218:43–74.

    Article  Google Scholar 

  9. Andreu N, et al. Optimisation of bioluminescent reporters for use with mycobacteria. PLoS One. 2010;5:e10777.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Contag CH, et al. Photonic detection of bacterial pathogens in living hosts. Mol Microbiol. 1995;18:593–603.

    Article  CAS  PubMed  Google Scholar 

  11. Hall CA, Flick-Smith HC, Harding SV, Atkins HS, Titball RW. A bioluminescent Francisella tularensis SCHU S4 strain enables noninvasive tracking of bacterial dissemination and the evaluation of antibiotics in an inhalational mouse model of tularemia. Antimicrob Agents Chemother. 2016;60:7206–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Massey S, et al. In vivo bioluminescence imaging of Burkholderia mallei respiratory infection and treatment in the mouse model. Front Microbiol. 2011;2:174–83.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mortin LI, et al. Rapid bactericidal activity of daptomycin against methicillin-resistant and methicillin-susceptible Staphylococcus aureus peritonitis in mice as measured with bioluminescent bacteria. Antimicrob Agents Chemother. 2007;51:1787–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang T, Li SY, Nuermberger EL. Autoluminescent Mycobacterium tuberculosis for rapid, real-time, non-invasive assessment of drug and vaccine efficacy. PLoS ONE. 2012;7:e29774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lopes N, et al. Detection of dichloromethane with a bioluminescent (lux) bacterial bioreporter. J Ind Microbiol Biotechnol. 2012;39:45–53.

    Article  CAS  PubMed  Google Scholar 

  16. Prévéral S, et al. A bioluminescent arsenite biosensor designed for inline water analyzer. Environ Sci Pollut Res. 2017;24:25–32.

    Article  Google Scholar 

  17. Kricka LJ. Clinical and biochemical applications of luciferases and luciferins. Anal Biochem. 1988;175:14–21.

    Article  CAS  PubMed  Google Scholar 

  18. Vocat A, et al. Bioluminescence for assessing drug potency against nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2015;59:4012–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Andreu N, Fletcher T, Krishnan N, Wiles S, Robertson BD. Rapid measurement of antituberculosis drug activity in vitro and in macrophages using bioluminescence. J Antimicrob Chemother. 2012;67:404–14.

    Article  CAS  PubMed  Google Scholar 

  20. Sharma S, et al. Simple and rapid method to determine antimycobacterial potency of compounds by using autoluminescent Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2014;58:5801–8.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Naran K, et al. Bioluminescent reporters for rapid mechanism of action assessment in tuberculosis drug discovery. Antimicrob Agents Chemother. 2016;60:6748–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mesak LR, Qi S, Villanueva I, Miao V, Davies J. Staphylococcus aureus promoter-lux reporters for drug discovery. J Antibiot. 2010;63:492–8.

    Article  CAS  Google Scholar 

  23. Horwich AL, Farr GW, Fenton WA. GroEL-GroES-mediated protein folding. Chem Rev. 2006;106:1917–30.

    Article  CAS  PubMed  Google Scholar 

  24. LaBreck CJ, May S, Viola MG, Conti J, Camberg JL. The protein chaperone ClpX targets native and non-native aggregated substrates for remodeling, disassembly, and degradation with ClpP. Front Mol Biosci. 2017;4:26.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Motohashi K, Taguchi H, Ishii N, Yoshida M. Isolation of the stable hexameric DnaK·DnaJ complex from Thermus thermophilus. J Biol Chem. 1994;269:27074–9.

    CAS  PubMed  Google Scholar 

  26. Chapman E, et al. Global aggregation of newly translated proteins in an Escherichia coli strain deficient of the chaperonin GroEL. Proc Natl Acad Sci USA. 2006;103:15800–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arita-Morioka K, Yamanaka K, Mizunoe Y, Ogura T, Sugimoto S. Novel strategy for biofilm inhibition by using small molecules targeting molecular chaperone DnaK. Antimicrob Agents Chemother. 2015;59:633–41.

    Article  PubMed  Google Scholar 

  28. Kim G, Akoolo L, Parker D. The ClpXP protease contributes to Staphylococcus aureus pneumonia. J Infect Dis. 2020. https://doi.org/10.1093/infdis/jiaa251.

  29. Mesak LR, Yim G, Davies J. Improved lux reporters for use in Staphylococcus aureus. Plasmid. 2009;61:182–7.

    Article  CAS  PubMed  Google Scholar 

  30. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kadar B, Kocsis B, Nagy K, Szabo D. The renaissance of polymyxins. Curr Med Chem. 2013;20:3759–73.

    Article  CAS  PubMed  Google Scholar 

  32. Gao R, et al. Dissemination and mechanism for the MCR-1 colistin resistance. PLoS Pathog. 2016;12:e1005957.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Van Bambeke F, Michot JM, Van Eldere J, Tulkens PM. Quinolones in 2005: an update. Clin Microbiol Infect. 2005;11:256–80.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China [Grant number 2017YFD0400301]; the National Natural Science Foundation of China [Grant numbers 31770042 and 31770043]; Shandong Province Key Research and Development Program [Grant numbers 2016GSF121040 and 2018GSF118008]; the Fundamental Research Funds of Shandong University [Grant numbers 2017JC028, 2018JC013, 2018JC027]; the State Key Laboratory of Microbial Technology Open Project Funds, Shandong University [Grant number M2018-07]; and Jinan Cultural Industry Development Fund. We would like to thank Prof. Julian Davies and Dr. Vivian Miao from University of British Columbia for kindly providing the pAmilux plasmid and good discussion on the work. We would like to thank Dr. Lili R. Mesak from University of British Columbia for helpful comments on our research strategy. We would also like to thank Dr. Haoxin Wang, Ms. Kun Zhang, Ms. Moli Sang, Ms. Yanan Ma, Ms. Wenya Su, Ms. Bianfang Wang, and Ms. Xin Wei from Shandong University for help during experiments. We would like to thank Mr. Xianbin Liu from the Core Facilities for Life and Environmental Sciences of Shandong University for assistance on bioluminescence detection.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingyu Wang or Hai Xu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Cui, Q., Zhang, M. et al. A lux-based Staphylococcus aureus bioluminescence screening assay for the detection/identification of antibiotics and prediction of antibiotic mechanisms. J Antibiot 73, 828–836 (2020). https://doi.org/10.1038/s41429-020-0349-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-020-0349-7

Search

Quick links