Skip to main content
Log in

The Length-Biased Weighted Lindley Distribution with Applications

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we propose a new length-biased distribution, which is a special case of weighted distributions. We derive some mathematical properties of the proposed distribution, including moment generating function, characteristic function and moments, and discuss parameter estimation by the method of moments and maximum likelihood estimation. We assess estimators via simulation, and show the potential of the proposed distribution by fitting it with some real-life data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. R. A. Fisher, ‘‘The effect of methods of ascertainment upon the estimation of frequencies,’’ Ann. Eugenics 6, 13–25 (1934).

    Article  Google Scholar 

  2. C. R. Rao, ‘‘On discrete distributions arising out of methods of ascertainment,’’ Sankhyā: Indian J. Stat., Ser. A, 311–324 (1965).

  3. G. P. Patil and J. K. Ord, ‘‘On size-biased sampling and related form-invariant weighted distributions,’’ Sankhyā: Indian J. Stat., Ser. B, 48–61 (1976).

  4. K. K. Das and T. D. Roy, ‘‘Applicability of length biased weighted generalized Rayleigh distribution,’’ Adv. Appl. Sci. Res. 2, 320–327 (2011).

  5. K. K. Das and T. D. Roy, ‘‘On some length-biased weighted Weibull distribution,’’ Adv. Appl. Sci. Res. 2, 465–475 (2011).

  6. M. V. Ratnaparkhi and U. V. Naik-Nimbalkar, ‘‘The length-biased lognormal distribution and its application in the analysis of data from oil field exploration studies,’’ J. Mod. Appl. Stat. Methods 11, 255–260 (2012).

    Article  Google Scholar 

  7. A. K. Al-Khadim and A. N. Hussein, ‘‘New proposed length biased weighted exponential and Rayleigh distribution with application,’’ Math. Theory Modeling 4, 2224–2235 (2014).

    Google Scholar 

  8. N. Nanuwong and W. Bodhisuwan, ‘‘Length biased beta-pareto distribution and its structural properties with application,’’ J. Math. Stat. 10, 49 (2014).

    Article  Google Scholar 

  9. P. Seenoi, T. Supapakorn, and W. Bodhisuwan, ‘‘The length-biased exponentiated inverted Weibull distribution,’’ Int. J. Pure Appl. Math. 92, 191–206 (2014).

    Article  Google Scholar 

  10. K. Modi and V. Gill, ‘‘Length-biased weighted Maxwell distribution,’’ Pakistan J. Stat. Oper. Res. 11, 465–472 (2015).

    Article  MathSciNet  Google Scholar 

  11. A. Ahmad, S. P. Ahmad, and A. Ahmed, ‘‘Length-biased weighted Lomax distribution: statistical properties and application,’’ Pakistan J.Stat. Oper. Res. 12, 245–255 (2016).

    Article  MathSciNet  Google Scholar 

  12. A. Saghir, S. Tazeem, and I. Ahmad, ‘‘The length-biased weighted exponentiated inverted Weibull distribution,’’ Cogent Math. 3, 1267299 (2016).

    MathSciNet  MATH  Google Scholar 

  13. A. Ayesha, ‘‘Size biased lindley distribution and its properties a special case of weighted distribution,’’ Appl. Math. 8, 808–819 (2017).

    Article  Google Scholar 

  14. A. A. Rather and C. Subramanian, ‘‘Length biased Sushila distribution,’’ Universal Rev. 7, 1010–1023 (2018).

    Google Scholar 

  15. D. V. Lindley, ‘‘Fiducial distributions and Bayes’ theorem,’’ J. R. Stat. Soc., Ser. B: Methodol., 102–107 (1958).

  16. M. E. Ghitany, B. Atieh, and S. Nadarajah, ‘‘Lindley distribution and its application,’’ Math. Comput. Simul. 78, 493–506 (2008).

    Article  MathSciNet  Google Scholar 

  17. A. Asgharzadeh, H. S. Bakouch, S. Nadarajah, and F. Sharafi, ‘‘A new weighted Lindley distribution with application,’’ Brazil. J. Prob. Stat. 30, 1–27 (2016).

    MATH  Google Scholar 

  18. J. C. Nash and R. Varadhan, ‘‘Unifying optimization algorithms to aid software system users: optimx for R,’’ J. Stat. Software 43 (9), 1–14 (2011).

    Article  Google Scholar 

  19. R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing (Vienna, Austria, 2018). https://www.R-project.org/. Accessed 2019.

  20. E. L. Lehmann and G. E. Casella, Theory of Point Estimation (Springer Science, New York, 2006).

    MATH  Google Scholar 

  21. D. P. Murthy, M. Bulmer, and J. A. Eccleston, ‘‘Weibull model selection for reliability modelling,’’ Reliab. Eng. Syst. Safety 86, 257–267 (2004).

    Article  Google Scholar 

  22. P. Chaussé, ‘‘Computing generalized method of moments and generalized empirical likelihood with R,’’ J. Stat. Software 34 (11), 1–35 (2010).

    Article  Google Scholar 

  23. J. F. E. Lawless, Statistical Models and Methods for Lifetime Data (Wiley, New Jersey, 2011).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yupapin Atikankul, Ampai Thongteeraparp, Winai Bodhisuwan or A. Volodin.

Ethics declarations

The authors thank Kasetsart University and Rajamangala University of Technology Phra Nakhon. Further, the authors are grateful to the reviewers for suggestions of the manuscript.

Additional information

(Submitted by A. M. Elizarov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atikankul, Y., Thongteeraparp, A., Bodhisuwan, W. et al. The Length-Biased Weighted Lindley Distribution with Applications. Lobachevskii J Math 41, 308–319 (2020). https://doi.org/10.1134/S199508022003004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199508022003004X

Keywords and phrases:

Navigation