Skip to main content
Log in

Using the Scattering Spectroscopy of keV-Energy Protons to Analyze the Deposition of Lithium on Tungsten

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Controlling the thickness of thin layers of lithium when they are deposited on plasma-facing elements is an important task in the field of plasma-surface interaction in fusion devices. It is shown the keV‑energy proton scattering spectroscopy can be used for this purpose. The sensitivity of technique to chemical reactions on a surface is demonstrated, and estimates of the charge state of hydrogen ions reflected from a lithium surface are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Federici, G., Skinner, C., Brooks, J., et al., Nucl. Fusion, 2001, vol. 41, no. 12, p. 1967.

    Article  ADS  Google Scholar 

  2. Lipschultz, B., Bonnin, X., Counsell, G., et al., Nucl. Fusion, 2007, vol. 47, no. 9, p. 1189.

    Article  ADS  Google Scholar 

  3. Roth, J., Tsitrine, E., Loarte, A., et al., J. Nucl. Mater., 2009, vols. 390–391, p. 1.

    Article  ADS  Google Scholar 

  4. McCracken, G.M. and Stott, P.E., Nucl. Fusion, 1979, vol. 19, no. 7, p. 889.

    Article  ADS  Google Scholar 

  5. Philipps, V., J. Nucl. Mater., 2011, vol. 415, no. 1 (suppl.), p. S2.

    Article  ADS  Google Scholar 

  6. Lu, G.-H., Zhou, H.-B., and Becquart, C.S., Nucl. Fusion, 2014, vol. 54, no. 8, 086001.

    Article  ADS  Google Scholar 

  7. Temmerman, G.D., Hirai, T., and Pitts, R.A., Plasma Phys. Controlled Fusion, 2018, vol. 60, no. 4, 044018.

    Article  ADS  Google Scholar 

  8. Hodille, E.A., Ghiorghiu, F., Addab, Y., et al., Nucl. Fusion, 2017, vol. 57, no. 7, 076019.

    Article  ADS  Google Scholar 

  9. Stan-Sion, C., Bekris, N., Kizane, G., et al., Nucl. Fusion, 2016, vol. 56, no. 4, 046015.

    Article  ADS  Google Scholar 

  10. Kaita, R., Plasma Phys. Controlled Fusion, 2019, vol. 61, no. 11, 113001.

    Article  ADS  Google Scholar 

  11. Zakharov, L.E., Nucl. Fusion, 2019, vol. 59, no. 9, 096008.

    Article  ADS  Google Scholar 

  12. Zakharov, L.E., Allain, J., Bennett, S., et al., IEEE Trans. Plasma Sci., 2019. https://doi.org/10.1109/TPS.2019.2953591

  13. Mansfield, D.K., Hill, K., Strachan, J., et al., Phys. Plasmas, 1996, vol. 3, no. 5, p. 1892.

    Article  ADS  Google Scholar 

  14. Majeski, R., Abrams, T., Boyle, D., et al., Phys. Plasmas, 2013, vol. 20, no. 5, 056103.

    Article  ADS  Google Scholar 

  15. Lucia, M., Kaita, R., Majeski, R., et al., J. Nucl. Mater., 2015, vol. 463, p. 907.

    Article  ADS  Google Scholar 

  16. Jaworski, M.A., Abrams, T., Allain, J., et al., Nucl. Fusion, 2013, vol. 53, no. 8, 083032.

    Article  ADS  Google Scholar 

  17. Skinner, C.H., Sullenberger, R., Koel, B., et al., J. Nucl. Mater., 2013, vol. 438, p. 647.

    Article  Google Scholar 

  18. Ono, M., Jaworski, M.A., Kaita, R., et al., Fusion Eng. Des., 2017, vol. 117, p. 124.

    Article  Google Scholar 

  19. Ren, J., Zuo, G., Hu, J.S., et al., Fusion Eng. Des., 2016, vol. 102, p. 36.

    Article  Google Scholar 

  20. Hu, J.S., Zuo, G., Ren, J., et al., Nucl. Fusion, 2016, vol. 56, no. 4, 046011.

    Article  ADS  Google Scholar 

  21. Yang, Q., Chen, Z., Du, Q., et al., Fusion Eng. Des., 2017, vol. 124, p. 179.

    Article  Google Scholar 

  22. De Castro, A., Sepetys, A., Gonzales, M., et al., Nucl. Fusion, 2018, vol. 58, no. 4, 046003.

    Article  ADS  Google Scholar 

  23. Morita, K., Tsuchiya, B., Oonishi, J., et al., Nucl. Instrum. Methods Phys. Res.,Sect. B, 2018, vol. 437, p. 8.

    Google Scholar 

  24. Morita, K., Tsuchiya, B., Tsuchida, H., et al., Solid State Ionics, 2020, vol. 344, 115135.

    Article  Google Scholar 

  25. Bulgadaryan, D., Kurnaev, V., Sinelnikov, D., et al., J. Phys.: Conf. Ser., 2018, vol. 941, no. 1, 012022.

    Google Scholar 

  26. Bulgadaryan, D., Sinelnikov, D., Kurnaev, V., et al., Nucl. Instrum. Methods Phys. Res.,Sect. B, 2018, vol. 438, p. 54.

    Google Scholar 

  27. Bulgadaryan, D., Sinelnikov, D., Kurnaev, V., et al., Nucl. Instrum. Methods Phys. Res.,Sect. B, 2018, vol. 434, p. 9.

    Google Scholar 

  28. Bulgadaryan, D., Kolodko, D., Kurnaev, V., et al., J. Phys.: Conf. Ser., 2016, vol. 748, no. 1, 012016.

    Google Scholar 

  29. Lyublinski, I.E., Vertkov, A.V., and Evtikhin, V.A., Plasma Devices Oper., 2009, vol. 17, no. 1, p. 42.

    Article  Google Scholar 

  30. Kurnaev, V.A., Protasov, Yu.S., and Tsvetkov, I.V., Vvedenie v puchkovuyu elektroniku (Introduction to Beam Electronics), Moscow: Trovant, 2008.

Download references

Funding

This work was supported by of the Russian Foundation for Basic Research, project no. 20-32-70146.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Bulgadaryan.

Additional information

Translated by V. Alekseev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulgadaryan, D.G., Sinelnikov, D.N., Efimov, N.E. et al. Using the Scattering Spectroscopy of keV-Energy Protons to Analyze the Deposition of Lithium on Tungsten. Bull. Russ. Acad. Sci. Phys. 84, 742–746 (2020). https://doi.org/10.3103/S1062873820060064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873820060064

Navigation