Skip to main content
Log in

Modeling of Influence of the Cathode Surface Insulating Film on the Voltage–Current Characteristic of the Glow Gas Discharge

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

A model of the glow gas discharge cathode sheath under the presence of a thin insulating film on the cathode surface is formulated, in which the field electron emission from the cathode metal substrate into the film is taken into account. It is shown that the voltage–current characteristic of such discharge is weakly growing or falling, and this can be a cause of experimentally observed its instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Raizer, Yu.P., Fizika gazovogo razryada (Gas Discharge Physics), Dolgoprudnyi: Intellekt, 2009.

  2. Kudryavtsev, A.A., Smirnov, A.S., and Tsendin, L.D., Fizika tleyushchego razryada (Glow Discharge Physics), St. Petersburg: Lan’, 2010.

  3. Schwieger, J., Baumann, B., Wolff, M., et al., J. Phys.: Conf. Ser., 2015, vol. 655, 012045.

    Google Scholar 

  4. Byszewski, W.W., Li, Y.M., Budinger, A.B., and Gregor, P.D., Plasma Sources Sci. Technol., 1996, vol. 5, no. 4, p. 720.

    Article  ADS  Google Scholar 

  5. Hadrath, S., Beck, M., Garner, R.C., et al., J. Phys. D: Appl. Phys., 2007, vol. 40, no. 1, p. 163.

    Article  ADS  Google Scholar 

  6. Lee, M.-B., Hahm, S.-H., Lee, J.-H., and Song, Y.-H., Appl. Phys. Lett., 2005, vol. 86, no. 12, 123511.

    Article  ADS  Google Scholar 

  7. Ptitsin, V.E., J. Phys.: Conf. Ser., 2011, vol. 291, no. 1, 012019.

    Google Scholar 

  8. Suzuki, M., Sagawa, M., Kusunoki, T., et al., IEEE Trans. Electron Devices, 2012, vol. 59, no. 8, p. 2256.

    Article  ADS  Google Scholar 

  9. Bondarenko, G.G., Fisher, M.R., and Kristya, V.I., Vacuum, 2016, vol. 129, p. 188.

    Article  ADS  Google Scholar 

  10. Bondarenko, G.G., Fisher, M.R., Myo Thi Ha, and Kristya, V.I., Russ. Phys. J., 2019, vol. 62, no. 1, p. 82.

    Article  Google Scholar 

  11. Kristya, V.I., Myo Thi Ha, and Fisher, M.R., J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 2019, vol. 13, no. 2, p.339.

    Article  Google Scholar 

  12. Modinos, A., Field, Thermionic and Secondary Electron Emission Spectroscopy, New York: Plenum, 1984.

    Book  Google Scholar 

  13. Forbes, R.G., Appl. Phys. Lett., 2006, vol. 89, no. 11, 113122.

    Article  ADS  Google Scholar 

  14. Hickmott, T.W., J. Appl. Phys., 2010, vol. 108, 093703.

    Article  ADS  Google Scholar 

  15. Hickmott, T.W., J. Appl. Phys., 2000, vol. 87, 7903.

    Article  ADS  Google Scholar 

  16. Bondarenko, G.G., Kristya, V.I., and Savichkin, D.O., Vacuum, 2018, vol. 149, p. 114.

    Article  ADS  Google Scholar 

  17. Phelps, A.V. and Petrović, Z.Lj., Plasma Sources Sci. Technol., 1999, vol. 8, no. 3, p. R21.

    Article  ADS  Google Scholar 

  18. Kristya, V.I. and Ye Naing Tun, Bull. Russ. Acad. Sci.: Phys., 2014, vol. 78, no. 6, p. 549.

    Article  Google Scholar 

  19. Donko, Z., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2001, vol. 64, no. 2, 026401.

    Article  ADS  Google Scholar 

  20. Ashley, J.C., Tung, C.J., and Ritchie, R.H., IEEE Trans. Nucl. Sci., 1975, vol. 22, no. 6, p. 2533.

    Article  ADS  Google Scholar 

  21. Kortov, V.S. and Zvonarev, S.V., Russ. Phys. J., 2008, vol. 51, no. 3, p. 277.

    Article  Google Scholar 

  22. Kryutchenko, O.N., Mannanov, A.F., Nosov, A.A., et al., Poverkhnost’. Fiz., Khim., Mekh., 1994, no. 6, p. 93.

  23. Rozsa, K. and Gallagher, A., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1995, vol. 52, no. 1, p. 913.

    Article  Google Scholar 

  24. Phelps, A.V., Petrovic, Z.Lj., and Jelenkovic, B.M., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1993, vol. 47, no. 4, p. 2825.

    Article  Google Scholar 

  25. Mokrov, M.S. and Raizer, Yu.P., Plasma Sources Sci. Technol., 2008, vol. 17, no. 3, 035031.

    Article  ADS  Google Scholar 

  26. Gutorov, K.M., Vizgaliv, I.V., Markina, E.A., and Kurnaev, V.A., Bull. Russ. Acad. Sci.: Phys., 2010, vol. 74, no. 2, p. 188.

    Article  Google Scholar 

Download references

Funding

This work was performed within the frameworks of the program “Organization of Scientific Researches” of the Ministry of Science and Higher Education of the Russian Federation in Bauman Moscow State Technical University (project 3.8408.2017/6.7) and was supported financially by the Russian Foundation for Basic Researches and the Kaluga Region Government (project no. 18-42-400001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Kristya.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kristya, V.I., Ha, M.T. & Fisher, M.R. Modeling of Influence of the Cathode Surface Insulating Film on the Voltage–Current Characteristic of the Glow Gas Discharge. Bull. Russ. Acad. Sci. Phys. 84, 698–701 (2020). https://doi.org/10.3103/S1062873820060131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873820060131

Navigation