Skip to main content
Log in

Competent closed form soliton solutions to the nonlinear transmission and the low-pass electrical transmission lines

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The nonlinear transmission line and the low-pass electrical transmission line equations are very important nonlinear evolution equations in electrical transmission line management. The modified simple equation (MSE) technique is a compatible and effective mathematical tool to extract soliton solutions of science and engineering problems. In this article, the MSE technique is introduced and implemented to extract broad-ranging exact wave solutions to the formerly stated equations and accomplish analytic soliton solutions including trigonometric and hyperbolic functions with parameters. Whenever the parameters accept appropriate values, soliton solutions are formulated from the wave solutions. We describe the solutions through 3D and 2D graphs. The shapes of the obtained solutions include kink soliton, peakon, periodic soliton, singular periodic soliton, bell shape soliton, compacton and singular kink type soliton. The results show that the MSE technique is a further operative and powerful mathematical tool for extracting the soliton solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. J.G. Liu, M.S. Osman, W.H. Zhu, L. Zhou, G.P. Ai, Different complex wave structures described by the Hirota equation with variable coefficients in inhomogeneous optical fibers. Appl. Phys. B 125(9), 175 (2019)

    ADS  Google Scholar 

  2. A.M. Wazwaz, Partial Differential Equations and Solitary Wave’s Theory (Higher Education Press, Berlin, 2009)

    Google Scholar 

  3. M.S. Osman, New analytical study of water waves described by coupled fractional variant Boussinesq equation in fluid dynamics. Pramana 93(2), 26 (2019)

    ADS  Google Scholar 

  4. D.L. Sekulic, M.V. Satoric, M.B. Zivanov, J.S. Bajic, Soliton-like pulses along electrical nonlinear transmission line. Elecron. Electr. Eng. 121, 53–58 (2012)

    Google Scholar 

  5. F.B. Pelap, M. Faye, Soliton like excitations in a one-dimensional electrical transmission line. J. Math. Phys. 46, 033501–033502 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  6. P. Marquié, J.M. Bibault, M. Remoissenet, Observation of nonlinear localized modes in an electrical lattice. Phys. Rev. E 51, 6127 (1995)

    ADS  Google Scholar 

  7. F. Kenmogne, D. Yemele, Bright and peak like pulse solitary waves and analogy with modulational instability in an extended nonlinear Schrodinger equation. Phys. Rev. E 88, 043201–043204 (2013)

    ADS  Google Scholar 

  8. S. Abdoulkary, T. Beda, O. Dafounamssou, Dynamics of solitary pulses in the nonlinear low-pass electrical transmission lines through the auxiliary equation method. J. Mod. Phys. Appl. 2, 69–87 (2013)

    Google Scholar 

  9. M.B. Hubert, G. Betchewe, S.Y. Doka, K.T. Crepin, Soliton wave solutions to the nonlinear transmission line using Kudryashov method and the (G′/G)-expansion method. Appl. Math. Comput. 239, 299–309 (2014)

    MathSciNet  MATH  Google Scholar 

  10. M.M. El-Borai, H.M. El-Owaidy, H.M. Ahmed, A.H. Arnous, Exact and soliton solutions to nonlinear transmission line model. Nonlinear Dyn. 87, 767–773 (2016)

    Google Scholar 

  11. E.M.E. Zayed, K.A.E. Alurrfi, A new Jacobi elliptic function expansion method for solving a nonlinear PDE describing the nonlinear low-pass electrical lines. Chaos, Solitons Fractals 78, 148–155 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  12. A.M. Shahoot, K.A.E. Alurrfi, M.O.M. Elmirid, A.M. Almisiri, A.M.H. Arwiniya, The (G′/G)-expansion method for solving a nonlinear PDE describing the nonlinear low-pass electrical lines. J. Taibah Univ. Sci. 13, 63–70 (2018)

    Google Scholar 

  13. Y. Pandir, A. Yildirim, Analytical approach for the fractional differential equation by using the extended tanh method. Wave Random Complex 28(3), 399–410 (2018)

    ADS  MathSciNet  Google Scholar 

  14. E. Fan, Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277, 212–218 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Y. Tian, Quasi hyperbolic function expansion method and tanh-function method for solving vibrating string equation and elastic rod equation. J. Low Freq. Noise V. A 38(3–4), 1455–1465 (2019)

    Google Scholar 

  16. A.M. Wazwaz, The Sine-Cosine and the tanh methods: Reliable tools for analytic treatment of nonlinear dispersive equations. Appl. Math. Comput. 173, 150–164 (2006)

    MathSciNet  MATH  Google Scholar 

  17. A.M. Wazwaz, A Sine-Cosine method for handling nonlinear wave equations. Math. Comput. Model. 40, 499–508 (2004)

    MathSciNet  MATH  Google Scholar 

  18. J. Sabi’u, A. Jibril, A.M. Gadu, New exact solution for the (3 + 1) conformable space-time fractional modified Korteweg-de-Vries equations via Sine-Cosine method. J. Taibah Univ. Sci. 13, 91–95 (2019)

    Google Scholar 

  19. M.M. El-Horbati, F.M. Ahmed, The solitary travelling wave solutions of some nonlinear partial differential equations using the modified extended tanh function method with Riccati equation. Asian Res. J. Math. 8(3), 1–13 (2018)

    Google Scholar 

  20. S. Arshed, A. Biswas, Q. Zhou, S. Khan, S. Adesynya, S.P. Moshokoa, M. Belic, Optical solitons perturbation with Fokas-Lenells equation by exp(− ϕ(ξ))-expansion method. Optik 179, 341–345 (2019)

    ADS  Google Scholar 

  21. K. Khan, M.A. Akbar, The exp(− ϕ(ξ))-expansion method for finding travelling wave solutions of Vakhnenko-Parkes equation. Int. J. Dyn. Syst. Diff. Equ. 5(1), 72–83 (2014)

    MATH  Google Scholar 

  22. H.C. Yaslan, A. Girgin, Exp-function method for the conformable space time fractional STO, ZKBBM and couple Boussnesq equations. Arab J. Basic Appl. Sci. 26(1), 163–170 (2019)

    Google Scholar 

  23. K. Khan, M.A. Akbar, Travelling wave solutions of the (2 + 1)-dimensional Zoomeron equation and the Burgers equation via the MSE method and the Exp-function method. Ain Shams Eng. J. 5, 247–256 (2014)

    Google Scholar 

  24. D. Lu, B. Hong, L. Tian, Backlund transformation and N-soliton-like solutions to the combined KdV-Burgers equation with variable coefficients. Int. J. Nonlinear Sci. 2(1), 3–10 (2006)

    MathSciNet  MATH  Google Scholar 

  25. T.L. Bock, M.D. Kruskal, A two-parameter Miura transformation of the Benjamin-Ono equation. Phys. Lett. A 74, 173–176 (1979)

    ADS  MathSciNet  Google Scholar 

  26. M.A. Abdou, The extended F-expansion method and its application for a class of nonlinear evolution equations. Chaos, Solitons Fractals 31, 95–104 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Z. Xue-Qin, Z. Hong-Yan, An improved F-expansion method and its application to coupled Drinfel’d–Sokolov–Wilson equation. Commun. Theor. Phys. 50, 309 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  28. M.M. Miah, H.M.S. Ali, M.A. Akbar, A.R. Seadawy, New applications of the two variable (G′/G,1/G)-expansion method for closed form travelling wave solutions of integro-differential equations. J. Ocean Eng. Sci. 4(2), 132–143 (2019)

    Google Scholar 

  29. E.M.E. Zayed, The (G′/G)-expansion method and its application to some nonlinear evolution equations in mathematical physics. J. Appl. Math. Comput. 30, 89–103 (2009)

    MathSciNet  MATH  Google Scholar 

  30. M.N. Alam, M.A. Akbar, Travelling wave solutions for the mKdV equation and the Gardner equations by new approach of the generalized (G′/G)-expansion method. J. Egypt. Math. Soc. 22(3), 402–406 (2014)

    MATH  Google Scholar 

  31. H. Khan, S. Barak, P. Kumam, M. Arif, Analytical solutions of fractional Klein–Gordon and gas dynamics equations, via the (G′/G,)-expansion method. Symmetry 11, 566 (2019)

    MATH  Google Scholar 

  32. M.M.A. Khater, A.R. Seadawy, D. Lu, Dispersive optical soliton solutions for higher order nonlinear Sasa-Satsuma equation in mono mode fibers via new auxiliary equation method. Superlatt. Microst. 113, 346–358 (2018)

    ADS  Google Scholar 

  33. C. Liu, X. Liu, A note on the auxiliary equation method for solving nonlinear differential equations. Phys. Lett. A 348, 222–227 (2006)

    ADS  MATH  Google Scholar 

  34. M.S. Osman, H. Rezazadeh, M. Eslami, A. Neirameh, M. Mirzazadeh, Analytical study of solitons to benjamin-bona-mahony-peregrine equation with power law nonlinearity by using three methods. U. Proc. Bull. Sci. Bull. Ser. A 80, 267–278 (2018)

    MathSciNet  MATH  Google Scholar 

  35. D. Kumar, M.T. Darvishi, A.K. Joardar, Modified Kudryashov method and its application to the fractional version of the variety of Boussinesq-like equations in shallow water. Opt. Quant. Electron. 50, 128 (2018)

    Google Scholar 

  36. A.S.A. Rady, E.S. Osman, M. Khalfallah, The homogeneous balance method and its application to the Benjamin–Bona–Mohoney (BBM) equation. Appl. Math. Comput. 217, 1385–1390 (2010)

    MathSciNet  MATH  Google Scholar 

  37. J. Hietarinta, Gauge symmetry and the generalization of Hirota’s bilinear method. J. Nonlinear Math. Phys. 3, 260–265 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  38. H.H. Chen, Y.C. Lee, C.S. Liu, Integrability of nonlinear Hamiltonian systems by inverse scattering method. Phys. Scr. 20, 3–4 (1979)

    MathSciNet  Google Scholar 

  39. A. Biswas, M. Ekici, A. Sonmezoglu, A.H. Kara, Optical solitons and conservation law in birefringent fibers with Kundu–Eckhaus equation by extended trial function method. Optik 179, 471–478 (2019)

    ADS  Google Scholar 

  40. Q. Wang, Relative periodic solutions of the N-vertex problem via the variational method. Arch. Ration. Mech. 231, 1401–1425 (2019)

    MATH  Google Scholar 

  41. Z. Yin-Long, L. Yin-Ping, L. Zhi-Bin, A connection between the (G′/G)-expansion method and the truncated Painleve expansion method and its application to the mKdV equation. Chin. Phys. B 19(3), 030306 (2010)

    Google Scholar 

  42. R. Sassaman, A. Heidari, A. Biswas, Topological and non-topological solitons of nonlinear Klein–Gordon equations by He’s semi inverse variational principle. J. Frank. Inst. 347, 1148–1157 (2010)

    MathSciNet  MATH  Google Scholar 

  43. E. Fan, J. Zhang, Applications of the Jacobi elliptic function method to special-type nonlinear equations. Phys. Lett. A 305, 383–392 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  44. V.S. Kumar, H. Rezazadeh, M. Eslami, F. Izadi, M.S. Osman, Jacobi elliptic function expansion method for solving KdV equation with conformable derivative and Dual-Power law nonlinearity. Int. J. Appl. Comput. Math. 5, 127 (2019)

    MathSciNet  MATH  Google Scholar 

  45. V. Marinca, M. Herisanu, C. Bota, B. Marinca, An optical homotopy asymptotic method applied to the steady flow the fourth-grade fluid past a porous plate. Appl. Math. Lett. 22, 245–251 (2009)

    MathSciNet  MATH  Google Scholar 

  46. S. Momani, Non-perturbative analytic solutions of the space and time-fractional Burgers equations. Chaos Soliton Fractals 28, 930–937 (2006)

    ADS  MATH  Google Scholar 

  47. B. Li, Y. Chen, H. Xuan, H. Zhang, Generalized Riccati equation expansion method and its application to the (3 + 1)-dimensional Jumbo–Mia equation. Appl. Math. Comput. 152, 581–595 (2004)

    MathSciNet  MATH  Google Scholar 

  48. J.G. Liu, X.J. Yang, Y.Y. Feng, On integrability of the time fractional nonlinear heat conducyion equation. J. Geom. Phys. 144, 190–198 (2019)

    ADS  MathSciNet  Google Scholar 

  49. J.H. He, The homotopy perturbation method for nonlinear oscillators with discontinuities. Appl. Math. Comput. 151(1), 287–292 (2004)

    MathSciNet  MATH  Google Scholar 

  50. A. Biswas, A. Yildirim, T. Hayat, O. Aldossary, R. Sassaman, Soliton perturbation theory for the generalized Klein–Gordon equation with full nonlinearity. Proc. Rom. A 13, 32–41 (2012)

    MathSciNet  Google Scholar 

  51. N.A. Kudryashov, First integrals and solutions of the travelling wave reduction for the Triki–Biswas equation. Optik 185, 275–281 (2019)

    ADS  Google Scholar 

  52. E.M.E. Zayed, Y.A. Amer, The first integral method and its application for deriving the exact solutions of a higher-order dispersive cubic-quintic nonlinear schroedinger equation. Comput. Math. Mod. 27, 80–94 (2016)

    MATH  Google Scholar 

  53. A.M. Wazwaz, L. Kaur, Optical solitons and Peregrine solitons for nonlinear Schroedinger equation by variational iteration method. Optik 179, 804–809 (2019)

    ADS  Google Scholar 

  54. Y. Yildirim, Optical solitons of Gerdjikov–Ivanov equation with four wave mixing terms in birefringent fibers by modified simple equation methodology. Optik 182, 745–754 (2019)

    ADS  Google Scholar 

  55. N. Kaplan, A. Bekir, A. Akbulut, E. Aksoy, The modified simple equation method for nonlinear fractional differential equations. Rom. J. Phys. 60, 1374–1383 (2015)

    Google Scholar 

  56. A.J.M. Jawad, M.D. Petcovic, A. Biswas, Modified simple equation method for nonlinear evolution equation. Appl. Math. Comput. 217, 869–877 (2010)

    MathSciNet  MATH  Google Scholar 

  57. D. Lu, M.S. Osman, M.M.A. Khater, R.A.M. Attia, D. Baleanu, Analytical and numerical simulations for the kinetics of phase separation in iron (Fe–Cr–X (X = Mo, Cu)) based on ternary alloys. Phys. A 537, 122634 (2020)

    MathSciNet  Google Scholar 

  58. C. Chen, Singular solitons of Biswas–Arshad equation by the modified simple equation method. Optik 184, 412–420 (2019)

    ADS  Google Scholar 

  59. M.S. Osman, D. Lu, M.M.A. Khater, R.A.M. Attia, Complex wave structures for abundant solutions related to the complex Ginzburg–Landau model. Optik 192, 162927 (2019)

    ADS  Google Scholar 

  60. M.A. Akbar, N.H.M. Ali, An ansatz for solving nonlinear partial differential equations in mathematical physics. Springrplus 5(1), 24 (2016)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Osman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayum, M.A., Akbar, M.A. & Osman, M.S. Competent closed form soliton solutions to the nonlinear transmission and the low-pass electrical transmission lines. Eur. Phys. J. Plus 135, 575 (2020). https://doi.org/10.1140/epjp/s13360-020-00573-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00573-8

Navigation