Skip to main content

Advertisement

Log in

Magnetic Field, Electron Density and Their Spatial Scales in Zebra Pattern Radio Sources

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Zebra patterns (zebras) play an important role in the plasma diagnostics during solar flares. Considering their double plasma resonance (DPR) model, we present an improved method for the determination of the gyro-harmonic numbers of the zebra stripes that are essential in determining the electron density and magnetic field strength in zebra sources. Furthermore, we present the magnetic field and density spatial scales in zebra sources. Compared to the previous method, we change the basic assumption of the method. Namely, the assumption that the ratio \(R={L_{\mathrm{bh}}} / {L_{\mathrm{nh}}}\) (\(L_{\mathrm{bh}}\) and \(L_{\mathrm{nh}}\) are the magnetic field and density scales) is constant in the whole zebra source is changed to its more generalized form, where the ratio \(R\) is a linear function. Using this improved method, first, we determine the gyro-harmonic numbers of several observed zebras and variations of the spatial scales. Then, knowing the gyro-harmonic numbers of zebra stripes, we compute the electron plasma density and magnetic field strength in zebra sources. It is shown that in all cases the gyro-harmonic numbers of zebra stripes are quite high (> ≈50). This significantly reduces the magnetic field strength and thus increases the plasma beta parameter in zebra sources. The change in the ratio of the magnetic field and density scales along the axis of the radiating tube for the studied zebras is within ± 5 percent. For zebras at high frequencies, this ratio increases with the height, and for zebras at lower frequencies it decreases. The ratio of the magnetic field and density scales across the radiating tube is close to 1 and varies in the range 0.87–1.20.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Aurass, H., Klein, K.-L., Zlotnik, E.Y., Zaitsev, V.V.: 2003, Solar type IV burst spectral fine structures. I. Observations. Astron. Astrophys.410, 1001. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bárta, M., Karlický, M.: 2006, Interference patterns in solar radio spectra: high-resolution structural analysis of the corona. Astron. Astrophys.450, 359. DOI. ADS.

    Article  ADS  Google Scholar 

  • Benáček, J., Karlický, M., Yasnov, L.: 2017, Temperature dependent growth rates of the upper-hybrid waves and solar radio zebra patterns. Astron. Astrophys.598, A106. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chen, B., Bastian, T.S., Gary, D.E., Jing, J.: 2011, Spatially and spectrally resolved observations of a zebra pattern in a solar decimetric radio burst. Astrophys. J.736, 64. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chernov, G.P.: 1976, Microstructure in continuous emission of type IV meter bursts. Modulation of continuous emission by wave packets of whistlers. Soviet Astron.20, 582. ADS.

    ADS  Google Scholar 

  • Chernov, G.P.: 1990, Whistlers in the solar corona and their relevance to fine structures of Type-IV radio emission. Solar Phys.130, 75. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chernov, G.P.: 2010, Recent results of zebra patterns in solar radio bursts. Res. Astron. Astrophys.10, 821. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chernov, G.P.: 2011, Fine Structure of Solar Radio Bursts, Springer, Heidelberg, 375. DOI. ADS.

    Book  Google Scholar 

  • Chernov, G.P., Fomichev, V.V., Sych, R.A.: 2018, Model of zebra patterns in solar radio emission. Geomagn. Aeron.58, 394. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chernov, G.P., Yan, Y.-H., Fu, Q.-J.: 2014, The importance of source positions during radio fine structure observations. Res. Astron. Astrophys.14, 831. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chernov, G.P., Fomichev, V.V., Tan, B., Yan, Y., Tan, C. Fu, Q.: 2015, Dynamics of flare processes and variety of the fine structure of solar radio emission over a wide frequency range of 30–7000 MHz. Solar Phys.290, 95. DOI.

    Article  ADS  Google Scholar 

  • Fu, Q., Ji, H., Qin, Z., Xu, Zh., Xia, Zh., Wu, H.: 2004, A new solar broadstripe radio spectrometer in China. Solar Phys.222, 167. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kaneda, K., Misawa, H., Iwai, K., Masuda, S., Tsuchiya, F., Katoh, Y., Obara, T.: 2018, Detection of propagating fast sausage waves through detailed analysis of a zebra-pattern fine structure in a solar radio burst. Astrophys. J. Lett.855, L29. DOI. ADS.

    Article  ADS  Google Scholar 

  • Karlický, M.: 2013, Radio continua modulated by waves: Zebra patterns in solar and pulsar radio spectra? Astron. Astrophys.552, A90. DOI. ADS.

    Article  ADS  Google Scholar 

  • Karlický, M., Yasnov, L.V.: 2015, Determination of plasma parameters in solar zebra radio sources. Astron. Astrophys.581, A115. DOI. ADS.

    Article  ADS  Google Scholar 

  • Karlický, M., Yasnov, L.V.: 2018a, Double plasma-resonance surfaces in flare loops and radio zebra emission. Astron. Astrophys.618, A60. DOI. ADS.

    Article  ADS  Google Scholar 

  • Karlický, M., Yasnov, L.V.: 2018b, Determination of plasma parameters in radio sources of solar zebra-patterns based on relations between the zebra-stripe frequencies and gyro-harmonic numbers. Astrophys. J.867, 28. DOI. ADS.

    Article  ADS  Google Scholar 

  • Karlický, M., Yasnov, L.V.: 2019, Zebra-stripe sources in the double-plasma resonance model of solar radio zebras. Astron. Astrophys.624, A119. DOI. ADS.

    Article  ADS  Google Scholar 

  • Karlický, M., Barta, M., Jiricka, K., Mészárosová, H., Sawant, H.S., Fernandes, F.C.R., Cecatto, J.R.: 2001, Radio bursts with rapid frequency variations - Lace bursts. Astron. Astrophys.375, 638. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kuijpers, J.: 1980, In: Kundu, M.R., Gergely, T.E. (eds.) Theory of Type IV Dm Bursts, Radio Physics of the Sun, 341. ADS.

    Google Scholar 

  • Kuijpers, J.: 1975, Collective wave-particle interactions in solar type IV radio source. Ph.D. Thesis, Utrecht University. ADS.

  • Kuznetsov, A.A.: 2007, On the superfine structure of solar microwave bursts. Astron. Lett.33, 319. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kuznetsov, A.A., Tsap, Y.T.: 2007, Loss-cone instability and formation of zebra patterns in type IV solar radio bursts. Solar Phys.241, 127. DOI. ADS.

    Article  ADS  Google Scholar 

  • LaBelle, J., Treumann, R.A., Yoon, P.H., Karlický, M.: 2003, A model of zebra emission in solar type IV radio bursts. Astrophys. J.593, 1195. DOI. ADS.

    Article  ADS  Google Scholar 

  • Laptukhov, A.I., Chernov, G.P.: 2006, New mechanism for the formation of discrete stripes in the solar radio spectrum. Plasma Phys. Rep.32, 866. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ledenev, V.G., Yan, Y., Fu, Q.: 2006, Interference mechanism of “zebra-pattern” formation in solar radio emission. Solar Phys.233, 129. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mollwo, L.: 1983, Interpretation of patterns of drifting ZEBRA stripes. Solar Phys.83, 305. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mollwo, L.: 1988, The magneto-hydrostatic field in the region of ZEBRA patterns in solar type-IV Dm-bursts. Solar Phys.116, 323. DOI. ADS.

    Article  ADS  Google Scholar 

  • Slottje, C.: 1972, Peculiar absorption and emission microstructures in the type IV solar radio outburst of March 2, 1970. Solar Phys.25, 210. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tan, B.: 2010, A physical explanation of solar microwave zebra pattern with the current-carrying plasma loop model. Astrophys. Space Sci.325, 251. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tan, B., Tan, C., Zhang, Y., Mészárosová, H., Karlický, M.: 2014, Statistics and classification of the microwave zebra patterns associated with solar flares. Astrophys. J.780, 129. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tan, B., Karlický, M., Mészárosová, H., Kashapova, L., Huang, J., Yan, Y., Kontar, E.P.: 2016, Diagnosing the source region of a solar burst on 26 September 2011 by using microwave type-III pairs. Solar Phys.291, 2407. DOI. ADS.

    Article  ADS  Google Scholar 

  • Winglee, R.M., Dulk, G.A.: 1986, The electron-cyclotron maser instability as a source of plasma emission. Astrophys. J.307, 808. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yasnov, L.V., Benáček, J., Karlický, M.: 2017, Brightness temperature of radio zebras and wave energy densities in their sources. Solar Phys.292, 163. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yasnov, L.V., Chernov, G.P.: 2020, Alternative models of zebra patterns in the event on June 21, 2011. Solar Phys.295, 13. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yasnov, L.V., Karlický, M.: 2004, The growth rate of upper-hybrid waves and dynamics of microwave zebra structures. Solar Phys.219, 289. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zheleznyakov, V.V., Zlotnik, E.Y.: 1975, Cyclotron wave instability in the corona and origin of solar radio emission with fine structure. III. Origin of zebra-pattern. Solar Phys.44, 461. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zheleznyakov, V.V., Zlotnik, E.Y., Zaitsev, V.V., Shaposhnikov, V.E.: 2016, Double plasma resonance and its manifestations in radio astronomy. Phys. Uspekhi59, 997. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zlotnik, E.Y., Zaitsev, V.V., Aurass, H., Mann, G., Hofmann, A.: 2003, Solar type IV burst spectral fine structures. II. Source model. Astron. Astrophys.410, 1011. DOI. ADS.

    Article  ADS  MATH  Google Scholar 

  • Zlotnik, E.Y., Zaitsev, V.V., Aurass, H., Mann, G.A.: 2009, Special radio spectral fine structure used for plasma diagnostics in coronal magnetic traps. Solar Phys.255, 273. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the referee for constructive comments, which improved the article. L.V. Yasnov acknowledges support from the Russian Foundation for Basic Research, Grants 18-29-21016-mk, Grant 18-02-00045, from Program RAN No.28, Project 1D and State Task No. AAAA-A17-117011810013-4. M. Karlický acknowledges the project RVO-67985815 and GA ČR grants 18-09072S, 19-09489S, 20-09922J and 20-07908S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Yasnov.

Ethics declarations

Disclosure of Potential Conflicts of Interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasnov, L.V., Karlický, M. Magnetic Field, Electron Density and Their Spatial Scales in Zebra Pattern Radio Sources. Sol Phys 295, 96 (2020). https://doi.org/10.1007/s11207-020-01652-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01652-w

Keywords

Navigation