Skip to main content
Log in

Ab-initio study of ordered III–V antimony-based semiconductor alloys \(\mathbf{GaP }_{1-x}{} \mathbf{Sb} _{x} \mathbf{and} AlP _{1-x}{} \mathbf{Sb} _{x}\)

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this work, we have investigated the structural, electronic and thermodynamic properties of GaP\(_{1-x}\)Sb\(_{x}\) and AlP\(_{1-x}\)Sb\(_{x}\) ternary alloys for a number of ordered structures and compositions in a series of first-principles calculations within the density functional theory, using full potential-linearised augmented plane-wave (FP-LAPW) method, as implemented in the WIEN2k code. The exchange-correlation effect was treated within the generalised gradient approximation (GGA) in the form of GGA-PBEsol to optimise the structure and to compute the ground-state properties. In addition to the GGA, the modified Becke–Johnson (mBJ) potential coupled with the spin-orbit interaction (SOI) was also applied to obtain reliable results for the electronic properties. Our investigation on the effect of composition on lattice constant, bulk modulus and band gap showed almost nonlinear dependence on the composition. The GaP\(_{1-x}\)Sb\(_{x}\) and AlP\(_{1-x}\)Sb\(_{x}\) alloys are found to be semiconductors with a positive energy gap for the whole concentration range. The spin-orbit splitting \(\Delta _{\mathrm {SO}}\) was found to increase with Sb composition with a marginal bowing parameter. Besides, a regular-solution model was used to investigate the thermodynamic stability of the alloys which mainly indicates a phase miscibility gap. In addition, the quasiharmonic Debye model was applied to analyse the effect of temperature and pressure on the Debye temperature and heat capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R M Biefeld and S R Kurtz, Infrared detectors and emitters, in: Materials and devices, Electronic Materials Series 8 edited by P Capper, C T Elliot (Kluwer Academic Publishers, Boston, 2000) p. 205

    Google Scholar 

  2. R M Biefeld, A A Alleman, S R Kurtz and K C Baucom, J. Crystal Growth 195, 356 (1998)

    ADS  Google Scholar 

  3. S R Kurtz, A A Alleman, R M Biefeld and K C Baucom, Appl. Phys. Lett. 72, 2093 (1998)

    ADS  Google Scholar 

  4. R M Biefeld, A A Alleman and S R Kurtz, Mater. Sci. Eng. B 51, 1 (1998)

    Google Scholar 

  5. J R Soderstrom, J Y Yao and T G Andersson, Appl. Phys. Lett. 58, 708 (1991)

    ADS  Google Scholar 

  6. T Ashley, A B Dean, C T Eliott, C F McConville, G J Pryce and C R Whitehouse, Appl. Phys. Lett. 59, 1761 (1991)

    ADS  Google Scholar 

  7. R M Biefeld, Mater. Sci. Eng. R 36, 105 (2002)

    Google Scholar 

  8. H Shimomura, T Anan and S Sugou, J. Crystal Growth 162, 121 (1996)

    ADS  Google Scholar 

  9. S Saib and N Bouarissa, Solid-State Electron. 50, 763 (2006)

    ADS  Google Scholar 

  10. D Chen and N M Ravindra, J. Mater. Sci. 47, 5735 (2012)

    ADS  Google Scholar 

  11. O Hildebrandt, W Kuebart and M H Pilkuhn, Appl. Phys. Lett. 37, 801 (1980)

    ADS  Google Scholar 

  12. E H Reihlen, M J Jou, Z M Fang and G B Stringfellow, J. Appl. Phys. 68, 4604 (1990)

    ADS  Google Scholar 

  13. M J Jou, Y T Cherng, H R Jen and G B Stringfellow, Appl. Phys. Lett. 52, 549 (1988)

    ADS  Google Scholar 

  14. D Chen and N M Ravindra, Emerging. Mater. Res. 2, 109 (2013)

  15. A R Degheidy and E B Elkenany, Thin Solid Films 599, 113 (2016)

    ADS  Google Scholar 

  16. A R Degheidy and E B Elkenany, Mater. Chem. Phys. 157, 108 (2015)

    Google Scholar 

  17. F Oumelaz, O Nemiri, A Boumaza, S Ghemid, H Meradji, S Ben Omran, F El Haj Hassan, D P Rai and R Khenata, Indian J. Phys. 92, 705 (2018)

    ADS  Google Scholar 

  18. I Vurgaftman, J R Meyer and L R Ram-Mohan, J. Appl. Phys. 89, 5815 (2001)

    ADS  Google Scholar 

  19. A Alahamry, N Bouarissa and A Kamli, Physica B 403, 1990 (2008)

    ADS  Google Scholar 

  20. N E H Fares and N Bouarissa, Mater. Res. 21(4), e20170964 (2018)

    Google Scholar 

  21. A R Degheidy, E B Elkenany and O A Alfrnwani, Comput. Condensed Matter. 16, e00310 (2018)

    Google Scholar 

  22. H Shimomura, T Anan, K Mori and S Sugou, Electron. Lett. 30, 314 (1994)

    ADS  Google Scholar 

  23. T Anan, H Shimomura and S Sugou, Electron. Lett. 30, 2138 (1994)

    ADS  Google Scholar 

  24. J Wu and Z M Wang, Quantum dot solar cells (Springer, New York, Heidelberg, Dordrecht, London, 2014)

    Google Scholar 

  25. E Lendvay, Prog. Crystal Growth Charact. 8, 371 (1984)

    Google Scholar 

  26. E C Muller and J C Richards, J. Appl. Phys. 35, 1233 (1964)

    ADS  Google Scholar 

  27. P Hohenberg and W Kohn, Phys. Rev. 136, 864 (1964); W Kohn and L J Sham, Phys. Rev. A 140, 1133 (1965)

  28. G K H Madsen, P Blaha, K Schwarz, E Sjöstedt and L Nordström, Phys. Rev. B 64, 195134 (2001)

    ADS  Google Scholar 

  29. K Schwarz, P Blaha and G K H Madsen, Comput. Phys. Commun. 147, 71 (2002)

    ADS  Google Scholar 

  30. P Blaha, K Schwarz, G K H Madsen, D Kvasnicka and J Luitz, WIEN2k, An Augmented-Plane-Wave \(+\) Local Orbitals Program for calculating crystal properties (Karlheinz Schwarz, Techn. Universitat, Wien, Austria, 2001)

    Google Scholar 

  31. J P Perdew, A Ruzsinszky, G I Csonka, O A Vydrov, G E Scuseria, L Constantin, X Zhou and K Burke, Phys. Rev. Lett. 100, 136406 (2008)

    ADS  Google Scholar 

  32. J P Perdew, K Burke and M Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  33. F Tran and P Blaha, Phys. Rev. Lett. 102, 226401 (2009)

    ADS  Google Scholar 

  34. H J Monkhorst and J D Park, Phys. Rev. B 13, 5188 (1976)

    ADS  MathSciNet  Google Scholar 

  35. F D Murnaghan, Proc. Nat. Acad. Sci. USA 30, 5390 (1944)

    Google Scholar 

  36. B Fluegel, S Francoeur and A Mascarenhas, Phys. Rev. Lett. 97,067205 (2006)

    ADS  Google Scholar 

  37. D J Chadi, Phys. Rev. B 16, 790 (1977)

    ADS  Google Scholar 

  38. Y Zhang, A Mascarenhas and L W Wang, Phys. Rev. B 71, 155201 (2005)

    ADS  Google Scholar 

  39. K H Hellwege and O Madelung (Eds.), Semi-conductor, intrinsic properties of group IV elements and III–V, II–VI and I–VII compounds, in: Landolt-Bornstein new series, Group III (Springer, Berlin, 1982) Vol. 22

  40. M Briki, M Abdelouhab, A Zaoui and M Ferhat, Superlatt. Microstruct. 45, 80 (2009)

    ADS  Google Scholar 

  41. R Ahmed, F Aleem, S J Hashemifar and H Akbarzadeh, Physica B 403, 1876 (2008)

    ADS  Google Scholar 

  42. O Madelung and Landolt Bornstein, Numerical data and functional relationships in science and technology new series (Springer, Berlin, 1982)

  43. B Bouhafs, H Aourag and M Cartier, J. Phys. Condens. Matter 12, 5655 (2000)

    ADS  Google Scholar 

  44. S Adachi, J. Appl. Phys. 58, R1 (1985)

    ADS  Google Scholar 

  45. H Salehi, H A Badehian and M Farbod, Mater. Sci. Semicond. Process. 26, 477 (2014)

    Google Scholar 

  46. F El Haj Hassan, A Breidi, S Ghemid, B Amrani, H Meradji and O Pagès, J. Alloys Compd. 499, 80 (2010)

    Google Scholar 

  47. S Q Wang and H Q Ye, Phys. Rev. B 66, 235111 (2002)

    ADS  Google Scholar 

  48. M Levinshtein, S Rumyantsev and M Shur (Eds.), Handbook series on semiconductor parameters (World Scientific, 1996)

  49. M P Thompson, G W Auner, T S Zheleva, K A Jones, S J Simko and J N Hilfiker, J. Appl. Phys. 89, 3321 (2001)

    ADS  Google Scholar 

  50. A N Chantis, M V Schilfgaarde and T Kotani, Phys. Rev. Lett. 96, 086405 (2006)

    ADS  Google Scholar 

  51. P Carrier and S H Wei, Condens. Matter 2, 0403409 (2004)

    Google Scholar 

  52. B J Parsons and H Piller, Program and abstract of the 3rd materials science symposium, electronic density of states (Gaitherburg, MD, USA, 1969)

    Google Scholar 

  53. Semiconductors: Basic data, 2nd edn, edited by O Madelung (Springer, Berlin, 1996)

  54. F Annane, H Meradji, S Ghemid and F El Haj Hassan, Comput. Mater. Sci. 50, 274 (2010)

  55. A Rashid, E A Fazal, S J Hashemifar, R Haris and H Akbarzadeh, Commun. Theor. Phys. 52, 527 (2009)

    ADS  Google Scholar 

  56. Z N Liang, P J H Denteneer and L Niesen, Phys. Rev. B 52, 8864 (1995)

    ADS  Google Scholar 

  57. K Strössner, S Ves, C K Kim and M Cardona, Phys. Rev. B 33, 4044 (1986)

    ADS  Google Scholar 

  58. R Weil, J. Appl. Phys. 43, 4271 (1972)

    ADS  Google Scholar 

  59. M Z Huang and W Y Ching, Phys. Rev. B 47, 9449 (1993); M Z Huang and W Y Ching, Phys. Rev. B 47, 9464 (1993)

  60. C Alibert, A Joullié, A M Joullié and C Ance, Phys. Rev. B 27, 4946 (1983)

    ADS  Google Scholar 

  61. S K Pugh, D J Dugale, S Brand and R A Abram, Semicond. Sci. Technol. 14, 23 (1999)

    ADS  Google Scholar 

  62. S Adachi, Handbook on physical properties of semiconductors (Kluwer Academic Publishers, New York, 2004)

    Google Scholar 

  63. Landolt Börnstein, Numerical data and functional relationships in science and technology edited by O Madelung, M Schulz and H Weiss (Springer, Berlin, 1982) Vol. III\(/\)17a,b

  64. W P Huhn and V Blum, Condens. Mater. Sci. 2, 1804 (2017)

    Google Scholar 

  65. L Vegard, Z. Phys. 5, 17 (1921)

    ADS  Google Scholar 

  66. S Adachi, Properties of semiconductor alloys: Group IV, III–V and II–VI semiconductors (John Wiley & Sons, New York, 2009)

    Google Scholar 

  67. A Fazeli Kisomi and S J Mousavi, Pramana – J. Phys. 91: 18 (2018)

    ADS  Google Scholar 

  68. D J Singh, Phys. Rev. B 82, 205102 (2010)

    ADS  Google Scholar 

  69. E H Reihlen, M J Jou, D H Jaw and G B Stringfellow, J. Appl. Phys. 68, 760 (1990)

    ADS  Google Scholar 

  70. A Zunger, S H Wei, L G Fereira and J E Bernard, Phys. Rev. Lett. 65, 353 (1990)

    ADS  Google Scholar 

  71. S H Wei, L G Fereira, J E Bernard and A Zunger, Phys. Rev. B 42, 9622 (1990)

    ADS  Google Scholar 

  72. R A Swalin, Thermodynamics of solids (Wiley, New York, 1961)

    MATH  Google Scholar 

  73. L G Ferreira, S H Wei, J E Bernard and A Zunger, Phys. Rev. B 40, 3197 (1989)

    ADS  Google Scholar 

  74. L K Teles, J Furthmüller, L M R Scolfaro, J R Leite and F Bechstedt, Phys. Rev. B 62, 2475 (2000)

    ADS  Google Scholar 

  75. G B Stringfellow, J. Crystal Growth 98, 108 (1989)

    ADS  Google Scholar 

  76. M A Blanco, E Francisco and V Luaña, Comput. Phys. Commun. 158, 57 (2004)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Meradji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Annane, F., Meradji, H., Ghemid, S. et al. Ab-initio study of ordered III–V antimony-based semiconductor alloys \(\mathbf{GaP }_{1-x}{} \mathbf{Sb} _{x} \mathbf{and} AlP _{1-x}{} \mathbf{Sb} _{x}\). Pramana - J Phys 94, 107 (2020). https://doi.org/10.1007/s12043-020-01966-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-01966-1

Keywords

PACS Nos

Navigation