Skip to main content
Log in

Even–odd effect of the homologous series of nCHBT liquid crystal molecules under the influence of an electric field: A theoretical approach

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this work, we present the effect of electric field on 4-(trans-4\('\)-n-alkyl-cyclohexyl) isothiocyanate-benzene (nCHBT) liquid crystal (LC) molecules. Under the influence of an electric field, the birefringence exhibits the even–odd effect while order parameter, HOMO–LUMO gap, magic angle, isotropic polarisability, range of director angle and the refractive index do not exhibit any even–odd effect. The extension of the alkyl chain length of the nCHBT liquid crystal molecule exhibits the even–odd effect for the dipole moment and temperature from nematic to isotropic phase transition while the HOMO–LUMO gap remains constant. Still, order parameters, isotropic polarisability and refractive index have continuously increased. The odd carbon atom numbers present higher values than the even carbon atom numbers of the alkyl chain for the phase transition temperature. The nCHBT LC molecule expresses the order parameter, and birefringence is reciprocal to each other. For the whole series, there is an increase in order parameter, and a decrease in birefringence. The influence of the external electric field is an alternative to the temperature for the optical parameter of nCHBT LC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H K Bisoyi and S Kumar, Chem. Soc. Rev. 39, 264 (2010)

    Article  Google Scholar 

  2. K Sielezin, R Kowerdziej and J Parka, Liq. Cryst. 46(9), 1367 (2019)

    Article  Google Scholar 

  3. T K Devi, B Choudhury, A Bhattacharjee and R Dabrowski, Opto-Electron. Rev. 22(1), 24 (2014)

    Article  ADS  Google Scholar 

  4. J Jadzyn, R Dabrowski, K Glumiak and G Czechowski. Z. Naturforsch. A 55, 637 (2000)

    Article  ADS  Google Scholar 

  5. J Jadyn, G Czechowski and N T Shonova, Liq. Cryst. 3(12), 1637 (1988)

    Article  Google Scholar 

  6. J W Baran, Z Raszewski, R Dabrowski, J Kedzierski and J Rutkowska, Mol. Cryst. Liq. Cryst. 123, 237 (1985)

    Article  Google Scholar 

  7. G H Brown, J W Doane and V D Neff, Crit. Rev. Solid State 303, 124 (2006)

    Google Scholar 

  8. R Dabrowski, J Dziaduszek and T Szczucinski. Mol. Cryst. Liq. Cryst. 102, 155 (1984)

    Article  Google Scholar 

  9. R Dabrowski, J Dziaduszek and T Szczucinski, Mol. Cryst. Liq. Cryst. 124, 241 (1985)

    Article  Google Scholar 

  10. J Jadzyn, R Dabrowski, K Glumai and G Czechowski, J. Chem. Eng. Data 45, 1027 (2000)

    Article  Google Scholar 

  11. P Sarkar, P Mandal, S Paul, R Paul, R Dabrowski and K Czuprynski, Liq. Cryst. 30, 507 (2003)

    Article  Google Scholar 

  12. J Jadzyn, G Czechowski, J L Dejardin and M Ginovska, J. Phys. Chem. A 111, 8325 (2007)

    Article  Google Scholar 

  13. R Buchecker and M Schadt, Mol. Cryst. Liq. Cryst. 149, 359 (1987)

    Article  Google Scholar 

  14. J Szulc and Z Stolarz, Mol. Cryst. Liq. Cryst. 263, 623 (1995)

    Article  Google Scholar 

  15. M Valiev, E J Bylaska, N Govind, K Kowalski, T P Straatsma, H J J van Dam, D Wang, J Nieplocha, E Apra, T L Windus and W A de Jong, Comput. Phys. Commun. 181, 1477 (2010)

    Article  ADS  Google Scholar 

  16. A D Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  ADS  Google Scholar 

  17. C Lee, W Yang and R G Parr, J. Phys. Rev. B 37, 785 (1988)

    Article  ADS  Google Scholar 

  18. Y Zhao and D G Truhlar, Chem. Acc. 120, 215 (2008)

  19. P J Hay and W R Wadt, J. Chem. Phys. 82, 299 (1985)

  20. P C Hariharan and J A Pople, Theor. Chim. Acta  28, 213 (1973)

    Article  Google Scholar 

  21. R Ditchfield, W J Hehre and J A Pople, J. Chem. Phys.  54(2), 724 (1971)

    Article  ADS  Google Scholar 

  22. Y Wang, F Wang, J Li, Z Huang, S Liang and J Zhou, Energies 10(4), 510 (2017)

    Article  Google Scholar 

  23. P Upadhyay, Qunatum mechanical study of optical properties of liquid crystal molecules, Ph.D. Thesis (BBAU, Lucknow, India, 2016)

  24. J H Robson, The temperature dependence of the electro-optic Kerr effect in solutions, Ph.D. Thesis (Aston University, UK, 1993)

  25. N V Madhusudana and S Chandrasekhar, Pramana – J. Phys.  1, 12 (1973)

  26. M S Beevers and G Williams, Mol. Chem. Phys. 72, 2171 (1976)

    Google Scholar 

  27. B R Sangala, A Nagarajan, P Deshmukh, H Surdi, G Rana, V G Achanta and S S Prabhu, Pramana – J. Phys. 94(2): 1 (2020)

  28. M F Vuks, Opt. Spect. 20, 361 (1966)

    ADS  Google Scholar 

  29. S Chandrasekhar, Rep. Prog. Phys. 39, 613 (1976)

    Article  ADS  Google Scholar 

  30. P Singh, K B Thapa, N Kumar, D Singh and D Kumar, Pramana – J. Phys. 93(3): 50 (2019)

    Google Scholar 

  31. H D Cohen and C C J Roothaan, J. Chem. Phys.  43, S34 (1965)

    Article  ADS  Google Scholar 

  32. A D Duckingharn, Adv. Chem. Phys. 12, 107 (1967)

    Google Scholar 

  33. D Bauman, J Jadzyn and G Czechowski, IEEE 8, 381 (2001)

    Google Scholar 

  34. J Jadzyn,  G Czechowski,  C Legrand and R Douali, Dielectric properties of 6-CHBT in isotropic and nematic phases, Proc. SPIE 4147, Liquid Crystals: Chemistry, Physics, and Applications (2000)

  35. R Dabrowski, P Kula and J Herman, Crystals 3, 443 (2013)

    Article  Google Scholar 

  36. P Rozga, IEEE Trans. Dielectr. Electr. Insul. 22, 754 (2015)

    ADS  Google Scholar 

  37. Z Razewski, R Dabrowski, ZStolarzowa and J Zmija, Crys. Res. Technol. 22(60), 835 (1987)

    Article  Google Scholar 

Download references

Acknowledgements

N Kumar is thankful to the University Grants Commission (UGC), New Delhi for providing financial support (NFSC). Authors are very grateful to Dr Anakuthil Anoop Ayyappan, Associate Professor, Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal for providing the help of Python Aggregation. Shivani Chaudhary is thankful to UGC for providing non-NET fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to NARINDER KUMAR.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KUMAR, N., CHAUDHARY, S., UPADHYAY, P. et al. Even–odd effect of the homologous series of nCHBT liquid crystal molecules under the influence of an electric field: A theoretical approach. Pramana - J Phys 94, 106 (2020). https://doi.org/10.1007/s12043-020-01967-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-01967-0

Keywords

PACS

Navigation