Skip to main content
Log in

The Effect of UV Irradiation on the Formation of Silver Molecular Clusters and Their Stabilization in Solutions and Composite and Oxide Coatings

  • OPTICAL MATERIALS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The influence of UV irradiation on the formation of molecular silver clusters in aqueous solutions containing silver, zinc, magnesium nitrates, and polyvinylpyrrolidone has been studied. Solutions and coatings have been investigated using optical and luminescent spectroscopy methods, the morphology of coatings has been analyzed by electron microscopy. It has been shown that irradiation significantly accelerates the processes of reduction of silver ions and of formation of molecular clusters and silver nanoparticles stabilized by polyvinylpyrrolidone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. V. D. Dubrovin, A. I. Ignatiev, N. V. Nikonorov, A. I. Sidorov, T. A. Shakhverdov, and D. S. Agafonova, Opt. Mater. 36, 753 (2014).

    Article  ADS  Google Scholar 

  2. D. S. Agafonova, E. V. Kolobkova, A. I. Ignatiev, N. V. Nikonorov, T. A. Shakhverdov, P. S. Shirshnev, A. I. Sidorov, and V. N. Vasiliev, Opt. Eng. 54, 117107 (2015).

    Article  ADS  Google Scholar 

  3. A. O. Rybaltovskii, A. A. Aksenov, V. I. Nerasimova, V. V. Zosimov, V. K. Popov, A. B. Solov’eva, P. S. Timashev, and V. N. Bagratashvili, Sverkhkrit. Flyuidy: Teor. Prakt. 3, 50 (2008).

    Google Scholar 

  4. S. K. Evstropiev, N. V. Nikonorov, V. M. Kiselev, A. S. Saratovskii, and E. V. Kolobkova, Opt. Spectrosc. 127, 314 (2019).

    Article  ADS  Google Scholar 

  5. G. A. Ozin and H. Huber, Inorg. Chem. 17, 155 (1978).

    Article  Google Scholar 

  6. M. Zaarour, El M. Roz, B. Dong, R. Retoux, R. Aad, J. Cardin, C. Dufour, F. Gourbilleau, J. P. Gison, and S. Mintova, Langmuir 30, 6250 (2014). https://doi.org/10.1021/la5006743.Hal-01138057

    Article  Google Scholar 

  7. P. Kshirsagar, S. S. Sangaru, M. A. Malvindi, L. Martiradonna, R. Gingolani, and P. P. Pompa, Colloid Surf., A 392, 264 (2011).

  8. P. Y. Silvert, R. Herrera-Urbina, N. Duvaauchelle, V. Vijayakrishnan, and K. J. Tekaia-Elhsissen, Mater. Chem. 6, 573 (1996).

    Article  Google Scholar 

  9. Huang Tao and Xu Xiao-Hong Nancy, J. Mater. Chem. 20, 9867 (2010).

    Article  Google Scholar 

  10. C. Petit, P. Lixon, and M. P. Pileni, J. Phys. Chem. 97, 12974 (1993).

    Article  Google Scholar 

  11. M. Pelton, Tang Yun, O. M. Bakr, and F. Stellacci, J. Am. Chem. Soc. 134, 11856 (2012).

    Article  Google Scholar 

  12. H. S. Ramsay, M. M. Silverman, D. Simon, R. D. Oleschuk, and K. G. Stamplecoskie, Nanoscale 11, 20522 (2019). https://doi.org/10.1039/C9NR07626c

    Article  Google Scholar 

  13. N. Cathcart, P. Mistry, C. Makra, B. Pietrobon, N. Coombs, M. Jelokhani-Niaraki, and V. Kitaev, Langmuir 25, 5840 (2009).

    Article  Google Scholar 

  14. X. L. Guéve, C. Spies, N. Schneider-Daum, G. Jung, and M. Scheneder, Nano Res. 5, 379 (2014).

    Article  Google Scholar 

  15. T. Yang, S. Dai, H. Tan, Y. Zong, Y. Liu, J. Chen, K. Zhang, P. Wu, S. Zhang, J. Xu, and Y. Tian, J. Phys. Chem. C 123, 18638 (2019).

    Article  Google Scholar 

  16. Jia Xiaofang, Li Jing, and W. Erkang, Chem. Commun. 50, 9565 (2014).

    Article  Google Scholar 

  17. Luo Zhentao, Zheng Kaiyuan, and Xie Jianping, Chem. Commun. 50, 5134 (2014).

    Google Scholar 

  18. M. Harb, F. Rabilloud, D. Simon, A. Rydlo, S. Lecoultre, F. Conus, V. Rodrigues, and C. Felix, J. Chem. Phys. 129, 194108 (2008). https://doi.org/10.1063/1.3013557

    Article  ADS  Google Scholar 

  19. P. Fageria, S. Gangopadhyay, and S. Pande, RSC Adv. 4, 24962 (2014). https://doi.org/10.1039/c4ra03158j

  20. S. Fedrigo, W. Harbich, and J. Buttet, Int. J. Mod. Phys. 6, 3767 (1992).

    Article  ADS  Google Scholar 

  21. S. Lecoultre, A. Rydlo, J. Buttet, C. Felix, S. Gilb, and W. Harbich, J. Chem. Phys. 134, 184504 (2011). https://doi.org/10.1063/1.3589357

    Article  ADS  Google Scholar 

  22. W. Harbich, S. Fedrigo, and F. Meyer, J. Chem. Phys. 93, 8535 (1990). https://doi.org/10.1063/1.459291

    Article  ADS  Google Scholar 

  23. N. Nedyalkov, A. Dikovska, M. Koleva, N. Stankova, R. Nikov, E. Borisova, Ts. Genova, L. Aleksandrov, R. Iordanova, and M. Terakawa, Opt. Mater. 100, 109618 (2020). https://doi.org/10.1016/j.optmat.2019.109618

    Article  Google Scholar 

  24. D. K. Sahu, P. Sarkar, D. Singha, and K. Sahu, RSC Adv. 9, 39405 (2019).

  25. M. van der Linden, A. Barendregt, J. van Bunningen, P. T. K. Chin, D. Thies-Weesie, F. M. F. de Groot, and A. Meijerink, Nanoscale 8, 19901 (2016).

    Article  Google Scholar 

  26. Z. Cheng, S. Zhao, and L. Han, Nanoscale 10, 6892 (2018).

    Article  Google Scholar 

  27. E. J. Guidelli, O. Baffa, and D. R. Clarke, Sci. Rep. 5, 14004 (2015).

    Article  ADS  Google Scholar 

  28. I. V. Bagrov, V. M. Kiselev, S. K. Evstrop’ev, A. S. Saratovskii, V. V. Demidov, and A. V. Matrosova, Opt. Spectrosc. 128, (2020, in press). https://doi.org/10.21883/OS.2020.02.48963.281-19

  29. S. K. Evstropiev, I. P. Soshnikov, E. V. Kolobkova, K. S. Evstropyev, N. V. Nikonorov, A. I. Khrebtov, K. V. Dukelskii, K. P. Kotlyar, K. V. Oreshkina, and A. V. Nashekin, Opt. Mater. 82, 81 (2018).

    Article  ADS  Google Scholar 

  30. S. K. Evstropiev, V. N. Vasilyev, N. V. Nikonorov, E. V. Kolobkova, N. A. Volkova, and I. S. Boltenkov, Chem. Eng. Process.: Process Intensif. 134, 45 (2018). https://doi.org/10.1016/j.cep.2018.10.020

    Article  Google Scholar 

  31. J. Mack and J. R. Bolton, J. Photochem. Photobiol. A: Chem. 128, 1 (1999).

    Article  Google Scholar 

  32. Wang Hongshui, Qiao Xueliang, Chen Jianguo, Wang Xiaojian, and Ding Shiyuan, Mater. Chem. Phys. 94, 449 (2005).

    Article  Google Scholar 

  33. Kan Caixia, Cai Weiping, Li Cuncheng, and Zhang Lide, J. Mater. Res. 20, 320 (2005).

    Article  ADS  Google Scholar 

  34. M. V. Stolyarchuk and A. I. Sidorov, Opt. Spectrosc. 125, 305 (2018).

    Article  ADS  Google Scholar 

  35. C. M. Sharpless and K. G. Linden, Environ. Sci. Technol. 35, 2949 (2001).

    Article  ADS  Google Scholar 

  36. R. B. M. Schasfoort and A. J. Tudos, Handbook of Surface Plasmon Resonance (RSC Publ., Cambridge, 2008).

    Book  Google Scholar 

  37. P. Y. Silvert, R. Herrera-Urbina, and K. Tekaia-Elhsissen, J. Mater. Chem. 7, 293 (1997).

    Article  Google Scholar 

  38. Huang Tao and Xu Xiao-Hong Nancy, J. Mater. Chem. 20, 9867 (2010).

    Article  Google Scholar 

  39. O. V. Istomina, S. K. Evstropiev, E. V. Kolobkova, and A. O. Trofimov, Opt. Spectrosc. 124, 774 (2018).

    Article  ADS  Google Scholar 

Download references

Funding

This work was partially financially supported (S.K. Evstrop’ev) by the Russian Science Foundation, grant no. 19-19-00596.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Evstrop’ev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by V. Rogovoi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evstrop’ev, S.K., Nikonorov, N.V., Saratovskii, A.S. et al. The Effect of UV Irradiation on the Formation of Silver Molecular Clusters and Their Stabilization in Solutions and Composite and Oxide Coatings. Opt. Spectrosc. 128, 707–712 (2020). https://doi.org/10.1134/S0030400X20060053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20060053

Keywords:

Navigation