Skip to main content

Advertisement

Log in

Protective Effect of Esculetin, Natural Coumarin in Mice Model of Fibromyalgia: Targeting Pro-Inflammatory Cytokines and MAO-A

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Fibromyalgia is a refractory syndrome characterized by chronic wayward pain and complex co-morbid psychological trepidation. The current treatments have a limited role and proper clinical benefits are far from satisfactory. Naturally occurring coumarins such as osthole are known to have analgesic and anti-inflammatory activities. Therefore, the current investigation was designed to explore the potential of natural coumarin esculetin (2.5, 5, and 10 mg/kg) in mitigating reserpine-induced fibromyalgia in Swiss albino mice. Esculetin is a 6,7 dihydroxy-coumarin obtained from various plant sources such as Aesculus hippocastanum L, Ceratostigma willmottianum, Citrus limonia, etc. Reserpine (0.5 mg/kg/day s.c.) treatment for first 3 days, significantly altered the behavior of mice as evidenced by reduced paw withdrawal threshold in pressure application measurement (PAM) test and electronic von-Frey (eVF) test, increased immobility time in forced swim test (FST), increased latency to reach the platform in Morris water maze (MWM) test and reduced number of square crossed in the open field test (OFT). These behavioral deficits with reserpine treatment were integrated with a reduced level of serotonin (5-HT), reduced glutathione (GSH), along with an increase in monoamine oxidase-A (MAO-A) activity, pro-inflammatory cytokines (IL-1β, TNF-α), thiobarbituric acid reactive substances (TBARS) and glutamate level. Esculetin (10 mg/kg/day i.p) treatment for 5 days, significantly abrogated reserpine induced behavioral and biochemical alterations. Whereas, no significant improvement was observed with lower doses of esculetin i.e. 2.5 and 5 mg/kg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sluka KA, Clauw DJ (2016) Neurobiology of fibromyalgia and chronic widespread pain. Neuroscience 338:114–129

    CAS  PubMed  Google Scholar 

  2. Kaur A, Singh L, Singh N, Bhatti MS, Bhatti R (2019) Ameliorative effect of imperatorin in chemically induced fibromyalgia: role of NMDA/NFkB mediated downstream signaling. Biochem Pharmacol 166:56–69

    CAS  PubMed  Google Scholar 

  3. Heymann RE, Paiva ES, Martinez JE, Helfenstein M, Rezende MC, Provenza JR, Ranzolin A, Assis MR, Feldman DP, Ribeiro LS, Souza EJR (2017) New guidelines for the diagnosis of fibromyalgia. Rev Bras Reumatol Engl Ed 57:467–476

    PubMed  Google Scholar 

  4. Singh L, Kaur A, Bhatti MS, Bhatti R (2019) Possible molecular mediators involved and mechanistic insight into fibromyalgia and associated co-morbidities. Neurochem Res. 44:1–16

    CAS  Google Scholar 

  5. Gracely RH, Petzke F, Wolf JM, Clauw DJ (2002) Functional magnetic resonance imaging evidence of augmented pain processing in fbromyalgia. Arthritis Rheum-US 46:1333–1343

    Google Scholar 

  6. Rizzi C, Tiberi A, Giustizieri M, Marrone MC, Gobbo F, Carucci NM, Meli G, Arisi I, D’Onofrio M, Marinelli S, Capsoni S (2018) NGF steers microglia toward a neuroprotective phenotype. Glia 66:1395–1416

    PubMed  PubMed Central  Google Scholar 

  7. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69

    CAS  PubMed  Google Scholar 

  8. Fatima G, Mahdi F (2017) Deciphering the role of oxidative and antioxidative parameters and toxic metal ion content in women with Fibromyalgia Syndrome. Free Radic Biol Med 112:23–24

    Google Scholar 

  9. Ohgidani M, Kato TA, Hosoi M, Tsuda M, Hayakawa K, Hayaki C, Iwaki R, Sagata N, Hashimoto R, Inoue K, Sudo N (2017) Fibromyalgia and microglial TNF-α: Translational research using human blood induced microglia-like cells. Sci Rep 7:11882

    PubMed  PubMed Central  Google Scholar 

  10. Ruediger T, Bolz J (2007) Neurotransmitters and the development of neuronal circuits. Axon Growth Guidance 621:104–115

    Google Scholar 

  11. Zieglgänsberger W (2019) Substance P and pain chronicity. Cell Tissue Res 375:227–241

    PubMed  Google Scholar 

  12. Jordan ML, Rominski B, Jaquins-Gerstl A, Geller D, Hoffman RA (1995) Regulation of inducible nitric oxide production by intracellular calcium. Surgery 118:138–145

    CAS  PubMed  Google Scholar 

  13. Murugan M, Ling EA, Kaur C (2013) Glutamate receptors in microglia. CNS Neurol Disord Drug Targets 12:773–784

    CAS  PubMed  Google Scholar 

  14. Welsch P, Üçeyler N, Klose P, Walitt B, Häuser W (2018) Serotonin and noradrenaline reuptake inhibitors (SNRIs) for fibromyalgia. Cochrane Database Syst Rev 2018:CD010292

    PubMed Central  Google Scholar 

  15. Naoi M, Maruyama W, Shamoto-Nagai M (2018) Type A monoamine oxidase and serotonin are coordinately involved in depressive disorders: from neurotransmitter imbalance to impaired neurogenesis. J Neural Transm 125:53–66

    CAS  PubMed  Google Scholar 

  16. Nagakura Y, Oe T, Aoki T, Matsuoka N (2009) Biogenic amine depletion causes chronic muscular pain and tactile allodynia accompanied by depression: a putative animal model of fibromyalgia. Painesa 146:26–33

    CAS  Google Scholar 

  17. DeSantana JM, da Cruz KM, Sluka KA (2013) Animal models of fibromyalgia. Arthritis Res Ther 15:222

    PubMed  PubMed Central  Google Scholar 

  18. Eiden LE, Weihe E (2011) VMAT2: a dynamic regulator of brain monoaminergic neuronal function interacting with drugs of abuse. Ann N Y Acad Sci 1216:86

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yaffe D, Forrest LR, Schuldiner S (2018) The ins and outs of vesicular monoamine transporters. J Gen Physiol 150:671–682

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Dedhia JD, Bone ME (2009) Pain and fibromyalgia Continuing education in anaesthesia. Crit Care Med 9:162–166

    Google Scholar 

  21. Kia S, Choy E (2017) Update on treatment guideline in fibromyalgia syndrome with focus on pharmacology. Biomedicines 5:20

    PubMed Central  Google Scholar 

  22. Thomford N, Senthebane D, Rowe A, Munro D, Seele P, Maroyi A, Dzobo K (2018) Natural products for drug discovery in the 21st century: innovations for novel drug discovery. Int J Mol Sci 19:1578

    PubMed Central  Google Scholar 

  23. Jeon YJ, Jang JY, Shim JH, Myung PK, Chae JI (2015) Esculetin a coumarin derivative exhibits anti-proliferative and pro-apoptotic activity in G361 human malignant melanoma. Eur J Cancer Prev 20:106

    Google Scholar 

  24. Liang C, Ju W, Pei S, Tang Y, Xiao Y (2017) Pharmacological activities and synthesis of esculetin and its derivatives: a mini-review. Molecules 22:387

    PubMed Central  Google Scholar 

  25. Sulakhiya K, Keshavlal GP, Bezbaruah BB, Dwivedi S, Gurjar SS, Munde N, Jangra A, Lahkar M, Gogoi R (2016) Lipopolysaccharide induced anxiety-and depressive-like behaviour in mice are prevented by chronic pre-treatment of esculetin. J Neuroinflamm 611:106–111

    CAS  Google Scholar 

  26. Zhu L, Nang C, Luo F, Pan H, Zhang K, Liu J, Zhou R, Gao J, Chang X, He H, Qiu Y (2016) Esculetin attenuates lipopolysaccharide (LPS)-induced neuroinflammatory processes and depressive-like behavior in mice. Physiol Behav 163:184–192

    CAS  PubMed  Google Scholar 

  27. Wang Z, Wang Q, Wang C, Xu X, Yu H (2017) Tetramethylpyrazine attenuates periorbital allodynia and neuroinflammation in a model of traumatic brain injury. J Inflamm 14:13

    Google Scholar 

  28. Deuis JR, Dvorakova LS, Vetter I (2017) Methods used to evaluate pain behaviors in rodents. Front Mol Neurosci 10:284

    PubMed  PubMed Central  Google Scholar 

  29. Guo YY, Liu SB, Cui GB, Ma L, Fen B, Xing JH, Yang Q, Li XQ, Wu YM, Xiong LZ, Zhang W (2012) Acute stress induces down-regulation of large conductance Ca2 + activated potassium channels in the lateral amygdala. J Physiol 590:875–886

    CAS  PubMed  Google Scholar 

  30. Porsolt RD, Le Pichon M, Jalfre M (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature 266:730–732

    CAS  PubMed  Google Scholar 

  31. Morris RG (1981) Spatial localization does not depend on the presence of local cues. Learn Motiv 12:239–260

    Google Scholar 

  32. Kaur S, Kaur A, Singh G, Bhatti R (2018) Mercurius solubilis attenuates scopolamine-induced memory deficits and enhances the motor coordination in mice. Int J Neurosci 128:219–230

    PubMed  Google Scholar 

  33. Arora V, Chopra K (2013) Possible involvement of oxido-nitrosative stress induced neuro-inflammatory cascade and monoaminergic pathway: underpinning the correlation between nociceptive and depressive behaviour in a rodent model. J Affect Disord 151:1041–1052

    CAS  PubMed  Google Scholar 

  34. Kasthuri S, Kavimani S, Devi R, Sundhararajan R, Deepa N (2015) Anticonvulsant activity of mahakalayanakaghrita in maximalelectro-shock and pentylenetetrazoleinduced seizures in rats. Int Res J Pharm 6:715–719

    CAS  Google Scholar 

  35. Kim SH, Kim SH, Kim SK, Nam EJ, Han SW, Lee SJ (2012) Spatial versus verbal memory impairments in patients with fibromyalgia. Rheumatol Int 32:1135–1142

    PubMed  Google Scholar 

  36. Canovas R, León I, Roldán MD, Astur R, Cimadevilla JM (2009) Virtual reality tasks disclose spatial memory alterations in fibromyalgia. Rheumatology 48:1273–1278

    PubMed  Google Scholar 

  37. Julien N, Goffaux P, Arsenault P, Marchand S (2005) Widespread pain in fibromyalgia is related to a deficit of endogenous pain inhibition. Pain 114:295–302

    PubMed  Google Scholar 

  38. Henriksson KG, Mense S (1994) Pain and nociception in fibromyalgia: clinical and neurobiological considerations on aetiology and pathogenesis. Pain Rev 1:245–260

    Google Scholar 

  39. Andreae LC, Burrone J (2014) The role of neuronal activity and transmitter release on synapse formation. Curr Opin Neurobiol 27:47–52

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kuypers KP, Ramaekers JG (2005) Transient memory impairment after acute dose of 75 mg 3.4-Methylene-dioxymethamphetamine. J Psychopharmacol 19:633–639

    CAS  PubMed  Google Scholar 

  41. Glikmann-Johnston Y, Saling MM, Reutens DC, Stout JC (2015) Hippocampal 5-HT1A receptor and spatial learning and memory. Front Pharmacol 6:289

    PubMed  PubMed Central  Google Scholar 

  42. Carr GV, Lucki I (2010) The role of serotonin in depression. In Handbook of Behavioral Neuroscience 21;493–505.

  43. Vianello R, Repič M, Mavri J (2012) How are biogenic amines metabolized by monoamine oxidases? Eur J Org Chem 2012:7057–7065

    CAS  Google Scholar 

  44. Pirildar S, Sezgin U, Elbi H, Uyar M, Zileli B (2003) A preliminary open-label study of moclobemide treatment of pain disorder. Psychopharm Bull 37:127–134

    Google Scholar 

  45. Schreiber S, Getslev V, Weizman A, Pick CG (1998) The antinociceptive effect of moclobemide in mice is mediated by noradrenergic pathways. Neurosci Lett 253:183–186

    CAS  PubMed  Google Scholar 

  46. Gursoy S, Erdal E, Sezgin M, Barlas IO, Aydeniz A, Alaşehirli B, Sahin G (2008) Which genotype of the MAO gene that the patients have are likely to be most susceptible to the symptoms of fibromyalgia? Rheumatol Int 28:307–311

    CAS  PubMed  Google Scholar 

  47. Tort S, Urrútia G, Nishishinya MB, Walitt B (2012) Monoamine oxidase inhibitors (MAOIs) for fibromyalgia syndrome. Cochrane Database Syst Rev. 4:CD009807

    Google Scholar 

  48. Youdim MBH, Sandler M (1968) Activation of monoamine oxidase and inhibition of aldehyde dehydrogenase by reserpine. Eur J Pharmacol 4:105–108

    CAS  PubMed  Google Scholar 

  49. Subakanmani S, Murugan S, Devi PU (2016) Evaluation of antidepressant like effects of ethanolic hypericum hookerianum and its glycosidic flavonoid enriched extract in reserpine induced swiss Albino Mice. Asian J Biochem 11:1–3

    CAS  Google Scholar 

  50. Golembiowska K, Dziubina A (2012) The effect of adenosine A 2A receptor antagonists on hydroxyl radical dopamine and glutamate in the striatum of rats with altered function of VMAT2. Neurotox Res 22:150–157

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Bagis S, Tamer L, Sahin G, Bilgin R, Guler H, Ercan B, Erdogan C (2005) Free radicals and antioxidants in primary fibromyalgia: an oxidative stress disorder? Rheumatol Int 25:188–190

    CAS  PubMed  Google Scholar 

  52. Maes M, Libbrecht I, Van Hunsel F, Lin AH, De Clerck L, Stevens W, Kenis G, de Jongh R, Bosmans E, Neels H (1999) The immune-inflammatory pathophysiology of fibromyalgia: increased serum soluble gp130, the common signal transducer protein of various neurotrophic cytokines. Psychoneuroendocrinology 24:371–383

    CAS  PubMed  Google Scholar 

  53. Carballo-Villalobos AI, González-Trujano ME, Alvarado-Vázquez N, López-Muñoz FJ (2017) Pro-inflammatory cytokines involvement in the hesperidin antihyperalgesic effects at peripheral and central levels in a neuropathic pain model. Inflammopharmacology 25:265–269

    CAS  PubMed  Google Scholar 

  54. Yang P, Gao Z, Zhang H, Fang Z, Wu C, Xu H, Huang QJ (2015) Changes in proinflammatory cytokines and white matter in chronically stressed rats. Neuropsychiatr Dis Treat 11:597–607

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang JM, An J (2007) Cytokines, inflammation and pain. Int Anesthesiol Clin 45:27

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kowluru RA, Odenbach S (2004) Role of interleukin-1β in the development of retinopathy in rats: effect of antioxidants. Invest Ophthalmol Vis Sci 45:4161–4166

    PubMed  Google Scholar 

  57. Grzybowski AE (2000) Interleukin 1beta decreases the GSH content and catalase activity in the human peritoneal mesothelial cells in vitro. Arch Immunol Ther Exp 48:205

    CAS  Google Scholar 

  58. Mazereeuw G, Herrmann N, Andreazza AC, Khan MM, Lanctôt KL (2015) A meta-analysis of lipid peroxidation markers in major depression. Neuropsychiatr Dis Treat 11:2479

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Maes M, Fisar Z, Medina M, Scapagnini G, Nowak G, Berk M (2012) New drug targets in depression: inflammatory, cell-mediated immune, oxidative and nitrosative stress, mitochondrial, antioxidant, and neuroprogressive pathways. And new drug candidates-Nrf2 activators and GSK-3 inhibitors. Inflammopharmacology 20:127–150

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Department of Science and Technology, Government of India, for funding received under EMR (EMR/2016/005878) and DST-PURSE. The authors gratefully acknowledge the financial support received from the University Grants Commission under RUSA scheme.

Funding

Department of Science and Technology, Government of India (EMR/2016/005878), DST-PURSE and University Grants Commission, RUSA scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajbir Bhatti.

Ethics declarations

Conflicts of Interest

The authors declare no conflicts of interest.

Ethics Approval

The entire study involving the use of mice was approved by the Institutional. Animal Ethics Committee (Approval No. 226/CPCSEA/2018/23) and the experiments were conducted according to ethical guidelines of the Ministry of Environment and Forests, Government of India.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, L., Kaur, A., Garg, S. et al. Protective Effect of Esculetin, Natural Coumarin in Mice Model of Fibromyalgia: Targeting Pro-Inflammatory Cytokines and MAO-A. Neurochem Res 45, 2364–2374 (2020). https://doi.org/10.1007/s11064-020-03095-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03095-y

Keywords

Navigation