Skip to main content
Log in

Atomically precise metal-chalcogenide semiconductor molecular nanoclusters with high dispersibility: Designed synthesis and intracluster photocarrier dynamics

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A comprehensive understanding of excited-state dynamics of semiconductor quantum dots or nanomaterials at the atomic or molecular level is of scientific importance. Pure inorganic (or non-covalently protected) seimiconductor molecular nanoclusters with atomically precise structure are contributive to establish accurate correlation of excited-state dynamics with their composition/structure, however, the related studies are almost blank because of unresolved solvent dispersion issue. Herein, we designedly created the largest discrete chalcogenide seimiconductor molecular nanoclusters (denoted P2-CuMSnS, M = In or/and Ga) with great dispersibility, and revealed an interesting intracluster “core-shell” charge transfer relaxation dynamics. A systematic red shift in absorption spectra with the gradual substitution of In by Ga was experimentally and computationally investigated, and femtosecond transient absorption measurements further manifested there were three ultrafast processes in excited-state dynamics of P2 nanoclusters with the corresponding amplitudes directed by composition variation. Current results hold the great promise of the solution-processible applications of semiconductor-NC-based quantum dots and facilitate the development of atomically precise nano-chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 2013, 7, 13–23.

    CAS  Google Scholar 

  2. Regulacio, M. D.; Han, M. Y. Multinary I-III-VI2 and I2-II-IV-VI4 semiconductor nanostructures for photocatalytic applications. Acc. Chem. Res. 2016, 49, 511–519.

    CAS  Google Scholar 

  3. Stroyuk, O.; Raevskaya, A.; Gaponik, N. Solar light harvesting with multinary metal chalcogenide nanocrystals. Chem. Soc. Rev. 2018, 47, 5354–5422.

    CAS  Google Scholar 

  4. McDonald, S. A.; Konstantatos, G.; Zhang, S. G.; Cyr, P. W.; Klem, E. J. D.; Levina, L.; Sargent, E. H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 2005, 4, 138–142.

    CAS  Google Scholar 

  5. Lan, X. Z.; Masala, S.; Sargent, E. H. Charge-extraction strategies for colloidal quantum dot photovoltaics. Nat. Mater. 2014, 13, 233–240.

    CAS  Google Scholar 

  6. Wheeler, D. A.; Zhang, J. Z. Exciton dynamics in semiconductor nanocrystals. Adv. Mater. 2013, 25, 2878–2896.

    CAS  Google Scholar 

  7. Kambhampati, P. Unraveling the structure and dynamics of excitons in semiconductor quantum dots. Acc. Chem. Res. 2011, 44, 1–13.

    CAS  Google Scholar 

  8. Mongin, C.; Garakyaraghi, S.; Razgoniaeva, N.; Zamkov, M.; Castellano, F. N. Direct observation of triplet energy transfer from semiconductor nanocrystals. Science, 2016, 351, 369–372.

    CAS  Google Scholar 

  9. Huang, Z. Y.; Xu, Z. H.; Mahboub, M.; Li, X.; Taylor, J. W.; Harman, W. H.; Lian, T. Q.; Tang, M. L. PbS/CdS core-shell quantum dots suppress charge transfer and enhance triplet transfer. Angew. Chem., Int. Ed. 2017, 56, 16583–16587.

    CAS  Google Scholar 

  10. Sun, Q.; Wang, S. P.; Zhao, C. Y.; Leng, J.; Tian, W. M.; Jin, S. Y. Excitation-dependent emission color tuning from an individual Mn-doped perovskite microcrystal. J. Am. Chem. Soc. 2019, 141, 20089–20096.

    CAS  Google Scholar 

  11. Wu, K. F.; Lian, T. Q. Quantum confined colloidal nanorod heterostructures for solar-to-fuel conversion. Chem. Soc. Rev. 2016, 45, 3781–3810.

    CAS  Google Scholar 

  12. Jin, C. H.; Ma, E. Y.; Karni, O.; Regan, E. C.; Wang, F.; Heinz, T. F. Ultrafast dynamics in van der Waals heterostructures. Nat. Nanotechnol. 2018, 13, 994–1003.

    CAS  Google Scholar 

  13. Li, G.; Lei, Z.; Wang, Q. M. Luminescent molecular Ag-S nanocluster [Ag62S13(SBut)32](BF4)4. J. Am. Chem. Soc. 2010, 132, 17678–17679.

    CAS  Google Scholar 

  14. Huang, R. W.; Dong, X. Y.; Yan, B. J.; Du, X. S.; Wei, D. H.; Zang, S. Q.; Mak, T. C. W. Tandem silver cluster isomerism and mixed linkers to modulate the photoluminescence of cluster-assembled materials. Angew. Chem., Int. Ed. 2018, 57, 8560–8566.

    CAS  Google Scholar 

  15. Liu, X.; Yuan, J. Y.; Yao, C. H.; Chen, J. S.; Li, L. L.; Bao, X. L.; Yang, J. L.; Wu, Z. K. Crystal and solution photoluminescence of MAg24(SR)18 (M = Ag/Pd/Pt/Au) nanoclusters and some implications for the photoluminescence mechanisms. J. Phys. Chem. C 2017, 121, 13848–13853.

    CAS  Google Scholar 

  16. Zhou, M.; Yao, C. H.; Sfeir, M. Y.; Higaki, T.; Wu, Z. K.; Jin, R. C. Excited-state behaviors of M1Au24(SR)18 nanoclusters: The number of valence electrons matters. J. Phys. Chem. C 2018, 122, 13435–13442.

    CAS  Google Scholar 

  17. Zhou, M.; Higaki, T.; Hu, G. X.; Sfeir, M. Y.; Chen, Y. X.; Jiang, D. E.; Jin, R. C. Three-orders-of-magnitude variation of carrier lifetimes with crystal phase of gold nanoclusters. Science 2019, 364, 279–282.

    CAS  Google Scholar 

  18. Wu, B.; Hu, J. H.; Cui, P.; Jiang, L.; Chen, Z. W.; Zhang, Q.; Wang, C. R.; Luo, Y. Visible-light photoexcited electron dynamics of scandium endohedral metallofullerenes: The cage symmetry and substituent effects. J. Am. Chem. Soc. 2015, 137, 8769–8774.

    CAS  Google Scholar 

  19. Soloviev, V. N.; Eichhöfer, A.; Fenske, D.; Banin, U. Size-dependent optical spectroscopy of a homologous series of CdSe cluster molecules. J. Am. Chem. Soc. 2001, 123, 2354–2364.

    CAS  Google Scholar 

  20. Bu, X. H.; Zheng, N. F.; Feng, P. Y. Tetrahedral chalcogenide clusters and open frameworks. Chem. —Eur. J. 2004, 10, 3356–3362.

    CAS  Google Scholar 

  21. Feng, P. Y.; Bu, X. H.; Zheng, N. F. The interface chemistry between chalcogenide clusters and open framework chalcogenides. Acc. Chem. Res. 2005, 38, 293–303.

    CAS  Google Scholar 

  22. Lee, G. S. H.; Craig, D. C.; Ma, I.; Scudder, M. L.; Bailey, T. D.; Dance, I. G. [S4Cd17(SPh)28]2−, the first member of a third series of tetrahedral [SwMLx(SR)y]z− clusters. J. Am. Chem. Soc. 1988, 110, 4863–4864.

    CAS  Google Scholar 

  23. Herron, N.; Calabrese, J. C.; Farneth, W. E.; Wang, Y. Crystal structure and optical properties of Cd32S14(SC6H5)36·DMF4, a cluster with a 15 angstrom CdS Core. Science 1993, 259, 1426–1428.

    CAS  Google Scholar 

  24. Zheng, N. F.; Bu, X. H.; Lu, H. W.; Zhang, Q. C.; Feng, P. Y. Crystalline superlattices from single-sized quantum dots. J. Am. Chem. Soc. 2005, 127, 11963–11965.

    CAS  Google Scholar 

  25. Zimmermann, C.; Melullis, M.; Dehnen, S. Reactivity of chalcogenostannate salts: Unusual synthesis and structure of a compound containing ternary cluster anions [Co44-Se)(SnSe4)4]10−. Angew. Chem., Int. Ed. 2002, 41, 4269–4272.

    CAS  Google Scholar 

  26. Dehnen, S.; Brandmayer, M. K. Reactivity of chalcogenostannate compounds: Syntheses, crystal structures, and electronic properties of novel compounds containing discrete ternary anions [MII44-Se)(SnSe4)4]10− (MII) Zn, Mn). J. Am. Chem. Soc. 2003, 125, 6618–6619.

    CAS  Google Scholar 

  27. Palchik, O.; Iyer, R. G.; Liao, J. H.; Kanatzidis, M. G. K10M4Sn4S17 (M = Mn, Fe, Co, Zn): Soluble quaternary sulfides with the discrete [M4Sn4S17]10− supertetrahedral clusters. Inorg. Chem. 2003, 42, 5052–5054.

    CAS  Google Scholar 

  28. Palchik, O.; Iyer, R. G.; Canlas, C. G.; Weliky, D. P.; Kanatzidis, M. G. K10M4M′4S17 (M = Mn, Fe, Co, Zn; M′ = Sn, Ge) and Cs10Cd4Sn4S17: Compounds with a discrete supertetrahedral cluster. Z. Anorg. Allg. Chem. 2004, 630, 2237–2247.

    CAS  Google Scholar 

  29. Nguyen, K. A.; Pachter, R.; Day, P. N.; Su, H. B. Theoretical analysis of structures and electronic spectra in molecular cadmium chalcogenide clusters. J. Chem. Phys. 2015, 142, 234305.

    Google Scholar 

  30. Lin, J.; Zhang, Q.; Wang, L.; Liu, X. C.; Yan, W. B.; Wu, T.; Bu, X. H.; Feng, P. Y. Atomically precise doping of monomanganese ion into coreless supertetrahedral chalcogenide nanocluster inducing unusual red shift in Mn2+ emission. J. Am. Chem. Soc. 2014, 136, 4769–4779.

    CAS  Google Scholar 

  31. Zhang, Q.; Lin, J.; Yang, Y. T.; Qin, Z. Z.; Li, D. S.; Wang, S.; Liu, Y. P.; Zou, X. X.; Wu, Y. B.; Wu, T. Exploring Mn2+-location-dependent red emission from (Mn/Zn)-Ga-Sn-S supertetrahedral nanoclusters with relatively precise dopant positions. J. Mater. Chem. C 2016, 4, 10435–10444.

    CAS  Google Scholar 

  32. Zhang, Y. Y.; Wang, X.; Hu, D. D.; Xue, C. Z.; Wang, W.; Yang, H. J.; Li, D. S.; Wu, T. Monodisperse ultrasmall manganese-doped multimetallic oxysulfide nanoparticles as highly efficient oxygen reduction electrocatalyst. ACS Appl. Mater. Interfaces 2018, 10, 13413–13424.

    CAS  Google Scholar 

  33. Liu, D. L.; Liu, Y.; Huang, P.; Zhu, C.; Kang, Z. H.; Shu, J.; Chen, M. Z.; Zhu, X.; Guo, J.; Zhuge, L. J. et al. Highly tunable heterojunctions from multimetallic sulfide nanoparticles and silver nanowires. Angew. Chem., Int. Ed. 2018, 57, 5374–5378.

    CAS  Google Scholar 

  34. Liu, D. L.; Fan, X.; Wang, X.; Hu, D. D.; Xue, C. Z.; Liu, Y.; Wang, Y.; Zhu, X.; Guo, J.; Lin, H. P. et al. Cooperativity by multi-metals confined in supertetrahedral sulfide nanoclusters to enhance electrocatalytic hydrogen evolution. Chem. Mater. 2019, 31, 553–559.

    CAS  Google Scholar 

  35. Hao, M. T.; Hu, Q. Q.; Zhang, Y. F.; Luo, M. B.; Wang, Y. Q.; Hu, B.; Li, J. R.; Huang, X. Y. Soluble supertetrahedral chalcogenido T4 clusters: High stability and enhanced hydrogen evolution activities. Inorg. Chem. 2019, 58, 5126–5133.

    CAS  Google Scholar 

  36. Li, Z. Q.; Mo, C. J.; Guo, Y.; Xu, N. N.; Zhu, Q. Y.; Dai, J. Discrete supertetrahedral CuInS nanoclusters and their application in fabrication of cluster-sensitized TiO2 photoelectrodes. J. Mater. Chem. A 2017, 5, 8519–8525.

    CAS  Google Scholar 

  37. Wu, T.; Wang, L.; Bu, X. H.; Chau, V.; Feng, P. Y. Largest molecular clusters in the supertetrahedral Tn series. J. Am. Chem. Soc. 2010, 132, 10823–10831.

    CAS  Google Scholar 

  38. Xiong, W. W.; Li, J. R.; Hu, B.; Tan, B.; Li, R. F.; Huang, X. Y. Largest discrete supertetrahedral clusters synthesized in ionic liquids. Chem. Sci. 2012, 3, 1200–1204.

    CAS  Google Scholar 

  39. Wu, T.; Zhang, Q.; Hou, Y.; Wang, L.; Mao, C. Y.; Zheng, S. T.; Bu, X. H.; Feng, P. Y. Monocopper doping in Cd-In-S supertetrahedral nanocluster via two-step strategy and enhanced photoelectric response. J. Am. Chem. Soc. 2013, 135, 10250–10253.

    CAS  Google Scholar 

  40. Wu, T.; Bu, X. H.; Zhao, X.; Khazhakyan, R.; Feng, P. Y. Phase selection and site-selective distribution by tin and sulfur in supertetrahedral zinc gallium selenides. J. Am. Chem. Soc. 2011, 133, 9616–9625.

    CAS  Google Scholar 

  41. Zheng, N. F.; Bu, X. H.; Feng, P. Y. Pentasupertetrahedral clusters as building blocks for a three-dimensional sulfide superlattice. Angew. Chem., Int. Ed. 2004, 43, 4753–4755.

    CAS  Google Scholar 

  42. Zhang, J. X.; Wang, X.; Lv, J.; Li, D. S.; Wu, T. A multivalent mixed-metal strategy for single-Cu+-ion-bridged cluster-based chalcogenide open frameworks for sensitive nonenzymatic detection of glucose. Chem. Commun. 2019, 55, 6357–6360.

    CAS  Google Scholar 

  43. Lu, Z. D.; Yin, Y. D. Colloidal nanoparticle clusters: Functional materials by design. Chem. Soc. Rev. 2012, 41, 6874–6887.

    CAS  Google Scholar 

  44. Bawendi, M. G.; Wilson, W. L.; Rothberg, L.; Carroll, P. J.; Jedju, T. M.; Steigerwald, M. L.; Brus, L. E. Electronic structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters. Phys. Rev. Lett. 1990, 65, 1623–1626.

    CAS  Google Scholar 

  45. Döllefeld, H.; Weller, H.; Eychmüller, A. Semiconductor nanocrystal assemblies: Experimental pitfalls and a simple model of particle-particle interaction. J. Phys. Chem. B 2002, 106, 5604–5608.

    Google Scholar 

  46. Döllefeld, H.; Weller, H.; Eychmüller, A. Particle-particle interactions in semiconductor nanocrystal assemblies. Nano Lett. 2001, 1, 267–269.

    Google Scholar 

  47. Snellenburg, J. J.; Laptenok, S.; Seger, R.; Mullen, K. M.; van Stokkum, I. H. M. Glotaran: A Java-based graphical user interface for the R package TIMP. J. Stat. Soft. 2012, 49, 1–22.

    Google Scholar 

  48. Zhou, M.; Zeng, C. J.; Sfeir, M. Y.; Cotlet, M.; Iida, K.; Nobusada, K.; Jin, R. C. Evolution of excited-state dynamics in periodic Au28, Au36, Au44, and Au52 nanoclusters. J. Phys. Chem. Lett. 2017, 8, 4023–4030.

    CAS  Google Scholar 

  49. Miller, S. A.; Womick, J. M.; Parker, J. F.; Murray, R. W.; Moran, A. M. Femtosecond relaxation dynamics of Au25L18 monolayer-protected clusters. J. Phys. Chem. C 2009, 113, 9440–9444.

    CAS  Google Scholar 

  50. Qian, H. F.; Sfeir, M. Y.; Jin, R. C. Ultrafast relaxation dynamics of [Au25(SR)18]q nanoclusters: Effects of charge state. J. Phys. Chem. C 2010, 114, 19935–19940.

    CAS  Google Scholar 

  51. Zhou, M.; Qian, H. F.; Sfeir, M. Y.; Nobusada, K.; Jin, R. C. Effects of single atom doping on the ultrafast electron dynamics of M1Au24(SR)18 (M = Pd, Pt) nanoclusters. Nanoscale 2016, 8, 7163–7171.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (Nos. 21671142, 11804084 and 21875150), the Jiangsu Province Natural Science Fund for Distinguished Young Scholars (No. BK20160006), the 111 Project (No. D20015), the Project of Scientific and Technologic Infrastructure of Suzhou (No. SZS201905) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). The authors also thank Dr. D. C. Ma at Analytical and Testing Center, Sichuan University for technical help with the Material Studio calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wu.

Electronic Supplementary Material

12274_2020_2936_MOESM1_ESM.pdf

Atomically precise metal-chalcogenide semiconductor molecular nanoclusters with high dispersibility: Designed synthesis and intracluster photocarrier dynamics

Supplementary material, approximately 3.19 MB.

Supplementary material, approximately 2.53 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Qin, C., Zhong, Y. et al. Atomically precise metal-chalcogenide semiconductor molecular nanoclusters with high dispersibility: Designed synthesis and intracluster photocarrier dynamics. Nano Res. 13, 2828–2836 (2020). https://doi.org/10.1007/s12274-020-2936-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2936-0

Keywords

Navigation