Skip to main content
Log in

Semiquantitative immunochromatographic colorimetric biosensor for the detection of dexamethasone based on up-conversion fluorescent nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A low-cost bifunctional immunochromatographic colorimetric biosensor was developed that can be read visually or by using an optical density scanner. Five test lines (T lines) coated with different antigens were set on a nitrocellulose (NC) membrane to indicate the concentration of analyte. This method was applied for the detection of dexamethasone. The corresponding detection range was 0.1–9 ng mL−1, and the detection limit for dexamethasone in food supplements and cosmetic samples was 2.0 μg kg−1. For visual inspection of the colour the quantitative relative error range between the proposed method and liquid chromatography was −62 to −25%, with a detection time of only 10 min. More accurate assay results were obtained by using an optical density scanner with the relative error range of −31 to 20%. The results indicated that the proposed method has the potential of application for rapid and efficient screening of dexamethasone in cosmetics and food supplements.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tang XQ, Li PW, Zhang ZW, Zhang Q, Guo JN, Zhang W (2017) An ultrasensitive gray-imaging-based quantitative immunochromatographic detection method for fumonisin B1 in agricultural products. Food Control 80:333–340. https://doi.org/10.1016/j.foodcont.2017.05.013

    Article  CAS  Google Scholar 

  2. Wu SS, Zhu FF, Hu LM, Xia J, Xu GM, Liu DF, Guo Q, Luo K, Lai WH (2017) Development of a competitive immunochromatographic assay for the sensitive detection of amantadine in chicken muscle. Food Chem 232:770–776. https://doi.org/10.1016/j.foodchem.2017.04.058

    Article  CAS  Google Scholar 

  3. Li BB, Song JZ, Chen JL, Ma L, Li XX, Li JT, Guan M (2018) Novel immunochromatography assay based on background fluorescence quenching for the sensitive determination of serum cystatin C. Anal Lett 52(8):1340–1351. https://doi.org/10.1080/00032719.2018.1538232

    Article  CAS  Google Scholar 

  4. Mahmud G, Campbell CJ, Bishop KJM, Komarova YA, Chaga O, Soh S, Huda S, Kandere-Grzybowska K, Grzybowski BA (2009) Directing cell motions on micropatterned ratchets. Nat Phys 5(8):606–612. https://doi.org/10.1038/nphys1306

    Article  CAS  Google Scholar 

  5. Panferov VG, Safenkova IV, Zherdev AV, Dzantiev BB (2017) Setting up the cut-off level of a sensitive barcode lateral flow assay with magnetic nanoparticles. Talanta 164:69–76. https://doi.org/10.1016/j.talanta.2016.11.025

    Article  CAS  Google Scholar 

  6. Serebrennikova KV, Samsonova JV, Osipov AP (2019) A semi-quantitative rapid multi-range gradient lateral flow immunoassay for procalcitonin. Mikrochim Acta 186(7):423. https://doi.org/10.1007/s00604-019-3550-2

    Article  CAS  Google Scholar 

  7. Fu XX, Xie RS, Wang J, Chen XJ, Wang XH, Sun WB, Meng JJ, Lai DW, Zhou LG, Wang BM (2017) Development of colloidal gold-based lateral flow immunoassay for rapid qualitative and semi-quantitative analysis of ustiloxins a and B in rice samples. Toxins 9(3):79. https://doi.org/10.3390/toxins9030079

    Article  CAS  Google Scholar 

  8. Molinelli A, Grossalber K, Führer M, Baumgartner S, Sulyok M, Krska R (2008) Development of qualitative and semiquantitative immunoassay-based rapid strip tests for the detection of T-2 toxin in wheat and oat. J Agr Food Chem 56(8):2589–2594. https://doi.org/10.1021/jf800393j

    Article  CAS  Google Scholar 

  9. Zhang DH, Li PW, Zhang Q, Li R, Zhang W, Ding XX, Li CM (2012) A naked-eye based strategy for semiquantitative immunochromatographic assay. Anal Chim Acta 740:74–79. https://doi.org/10.1016/j.aca.2012.06.015

    Article  CAS  Google Scholar 

  10. Zhang DH, Li PW, Liu W, Zhao L, Zhang Q, Zhang W, Ding XX, Wang JL (2013) Development of a detector-free semiquantitative immunochromatographic assay with major aflatoxins as target analytes. Sensors Actuat B-Chem 185:432–437. https://doi.org/10.1016/j.snb.2013.05.034

    Article  CAS  Google Scholar 

  11. Liu CM, Dou XW, Zhang L, Kong WJ, Wu L, Duan YP, Yang MH (2018) Development of a broad-specificity antibody-based immunoassay for triazines in ginger and the quantitative structure-activity relationship study of cross-reactive molecules by molecular modeling. Anal Chim Acta 1012:90–99. https://doi.org/10.1016/j.aca.2018.01.042

    Article  CAS  Google Scholar 

  12. Farka Z, Juřík T, Kovář D, Trnková L, Skládal P (2017) Nanoparticle-based immunochemical biosensors and assays: recent advances and challenges. Chem Rev 117(15):9973–10042. https://doi.org/10.1021/acs.chemrev.7b00037

    Article  CAS  Google Scholar 

  13. Hu GS, Sheng W, Zhang Y, Wu XN, Wang S (2015) A novel and sensitive fluorescence immunoassay for the detection of fluoroquinolones in animal-derived foods using upconversion nanoparticles as labels. Anal Bioanal Chem 407(28):8487–8496. https://doi.org/10.1007/s00216-015-8996-4

    Article  CAS  Google Scholar 

  14. Zhang SW, Yao TQ, Wang SF, Feng RH, Chen LQ, Zhu V, Hu GP, Zhang H, Yang GW (2018) Development of an upconversion luminescence nanoparticles–based immunochromatographic assay for the rapid detection of dexamethasone in animal tissue. Food Anal Methods 12(3):752–760. https://doi.org/10.1007/s12161-018-01411-5

    Article  Google Scholar 

  15. Zhang SW, Yao TQ, Wang SF, Feng RH, Chen LQ, Zhu V, Hu GP, Zhang H, Yang GW (2019) Upconversion luminescence nanoparticles-based immunochromatographic assay for quantitative detection of triamcinolone acetonide in cosmetics. Spectrochim Acta A Mol Biomol Spectrosc 214:302–308. https://doi.org/10.1016/j.saa.2019.02.053

    Article  CAS  Google Scholar 

  16. Liu CH, Wang H, Li X, Chen DP (2009) Monodisperse, size-tunable and highly efficient β-NaYF4:Yb,Er(Tm) up-conversion luminescent nanospheres: controllable synthesis and their surface modifications. J Mater Chem 19(21):3546–3553. https://doi.org/10.1039/b820254k

    Article  CAS  Google Scholar 

  17. Wang M, Mi CC, Wang WX, Liu CH, Wu YF, Xu ZR, Mao CB, Xu SK (2009) Immunolabeling and NIR-Excited Fluorescent Imaging of HeLa Cells by Using NaYF4:Yb,Er Upconversion Nanoparticles. ACS Nano 3(6):1580–1586. https://doi.org/10.1021/nn900491j

    Article  CAS  Google Scholar 

  18. Wang PL, Wang RG, Zhang W, Su XO, Luo HF (2016) Novel fabrication of immunochromatographic assay based on up conversion phosphors for sensitive detection of clenbuterol. Biosens Bioelectron 77:866–870. https://doi.org/10.1016/j.bios.2015.10.053

    Article  CAS  Google Scholar 

  19. Van den Hauwe O, Perez JC, Claereboudt J, Peteghem CV (2001) Simultaneous determination of betamethasone and dexamethasone residues in bovine liver by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Sp 15(11):857–861. https://doi.org/10.1002/rcm.308

    Article  Google Scholar 

  20. Gao JM, Cao J, Ding H (2018) Uncertainty evaluation for the determination of dexamethasone in cosmetics by ultra performance liquid chromatography-tandem mass spectrometry. China Pharmacist 21(3):539–542,546. https://doi.org/10.3969/j.issn.1008-049X.2018.03.051

    Article  Google Scholar 

  21. Zhu D, Mu Y, Li Q, Pang X, Wang X, Liu Y, Liu Y, Chen G, Chen H (2016) A novel method for artificial antigen synthesis and preparation of a polyclonal antibody for the sensitive determination of leucomalachite green in fish samples by enzyme-linked immunoassay. Anal Methods 32:6236–6243. https://doi.org/10.1039/C6AY01564F

    Article  CAS  Google Scholar 

  22. Chu CC, Hsing CH, Shieh JP, Chien CC, Ho CM, Wang JJ (2014) The cellular mechanisms of the antiemetic action of dexamethasone and related glucocorticoids against vomiting. Eur J Pharmacol 722:48–54. https://doi.org/10.1016/j.ejphar.2013.10.008

    Article  CAS  Google Scholar 

  23. Sami M, Mohri M, Seifi HA (2015) Effects of dexamethasone and insulin alone or in combination on energy and protein metabolism indicators and milk production in dairy cows in early lactation - a randomized controlled trial. PLoS One 10(9):e0139276. https://doi.org/10.1371/journal.pone.0139276

    Article  CAS  Google Scholar 

  24. Barbera S, Tarantola M, Sala G, Nebbia C (2018) Canonical discriminant analysis and meat quality analysis as complementary tools to detect the illicit use of dexamethasone as a growth promoter in Friesian bulls. Vet J 235:54–59. https://doi.org/10.1016/j.tvjl.2018.03.006

    Article  CAS  Google Scholar 

  25. Kim H, Jang M, Park R, Jo D, Choi I, Choe J, Oh WK, Park J (2018) Conessine treatment reduces dexamethasone-induced muscle atrophy by regulating MuRF1 and Atrogin-1 expression. J Microbiol Biotechnol 28(4):520–526. https://doi.org/10.4014/jmb.1711.11009

    Article  CAS  Google Scholar 

  26. Liu M, Li XY, Li JJ, Wu ZY, Wang F, Liu L, Tan XC, Lei FH (2017) Selective separation and determination of glucocorticoids in cosmetics using dual-template magnetic molecularly imprinted polymers and HPLC. J Colloid Interface Sci 504:124–133. https://doi.org/10.1016/j.jcis.2017.05.041

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Key-Area Research and Development Program of Guangdong Province (2019B020211002), the National Natural Science Foundation of China (31871887), the Basic and Applied Basic Research Foundation of Guangdong Province (2020A1515011238, 2019B1515210025 and 2018B030314005), and the Key Scientific Research Projects of Guangdong Provincial Universities and Colleges (2018KZDXM011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanyan Sun or Yudong Shen.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Sun, Y., Sun, Y. et al. Semiquantitative immunochromatographic colorimetric biosensor for the detection of dexamethasone based on up-conversion fluorescent nanoparticles. Microchim Acta 187, 447 (2020). https://doi.org/10.1007/s00604-020-04418-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04418-0

Keywords

Navigation