Skip to main content
Log in

The Invertibility of U-Fusion Cross Gram Matrices of Operators

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

Finding matrix representations is an important part of operator theory. Calculating such a discretization scheme is equally important for the numerical solution of operator equations. Traditionally in both fields, this was done using bases. Recently, frames have been used here. In this paper, we apply fusion frames for this task, a generalization motivated by a block representation, respectively, a domain decomposition. We interpret the operator representation using fusion frames as a generalization of fusion Gram matrices. We present the basic definition of U-fusion cross Gram matrices of operators for a bounded operator U. We give necessary and sufficient conditions for their (pseudo-)invertibility and present explicit formulas for the (pseudo-)inverse. More precisely, our attention is on how to represent the inverse and pseudo-inverse of such matrices as U-fusion cross Gram matrices. In particular, we characterize fusion Riesz bases and fusion orthonormal bases by such matrices. Finally, we look at which perturbations of fusion Bessel sequences preserve the invertibility of the fusion Gram matrix of operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. This could be called a generalized subband matrix, motivated by system identification applications [41].

References

  1. Aldroubi, A., Baskakov, A., Krishtal, I.: Slanted matrices, banach frames, and sampling. J. Funct. Anal. 255(7), 1667–1691 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Aldroubi, A., Cabrelli, C., Çakmak, A., Molter, U., Petrosyan, A.: Iterative actions of normal operators. J. Funct. Anal. 272(3), 1121–1146 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Ali, S.T.A., Antoine, J.-P., Gazeau, J.-P.: Continuous frames in Hilbert space. Ann. Phys. 222(1), 1–37 (1993)

    MathSciNet  MATH  Google Scholar 

  4. Antoine, J.-P., Balazs, P.: Frames and semi-frames. J. Phys. A 44, 205201 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Arefijamaal, A.A., Neyshaburi, F.A.: Some properties of alternate duals and approximate alternate duals of fusion frames. Turk. J. Math. 41(5), 1191–1203 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Atkinson, F.V., Langer, H., Mennicken, R., Shkalikov, A.A.: The essential spectrum of some matrix operators. Math. Nachr. 167(1), 5–20 (1994)

    MathSciNet  MATH  Google Scholar 

  7. Balazs, P.: Basic definition and properties of Bessel multipliers. J. Math. Anal. Appl. 325(1), 571–585 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Balazs, P.: Matrix-representation of operators using frames. Sampl. Theory Signal Image Process. 7(1), 39–54 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Balazs, P., Antoine, J.-P., Grybos, A.: Weighted and controlled frames: mutual relationship and first numerical properties. Int. J. Wavelets Multiresolut. Inf. Process. 8(1), 109–132 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Balazs, P., Gröchenig, K.: A guide to localized frames and applications to Galerkin-like representations of operators. In: Pesenson, I., Mhaskar, H., Mayeli, A., Gia, Q.T.L., Zhou, D.-X. (eds.) Frames and Other Bases in Abstract and Function Spaces, Applied and Numerical Harmonic Analysis series (ANHA). Birkhauser/Springer, Cham (2017)

    Google Scholar 

  11. Balazs, P., Holighaus, N., Necciari, T., Stoeva, D.: Frame theory for signal processing in psychoacoustics. In: Balan, R., Benedetto, J.J., Czaja, W., Okoudjou, K. (eds.) Excursions in Harmonic Analysis, vol. 5. Springer, Berlin (2017)

    Google Scholar 

  12. Balazs, P., Rieckh, G.: Oversampling operators: frame representation of operators. Analele Universitatii “Eftimie Murgu” 18(2), 107–114 (2011)

    Google Scholar 

  13. Balazs, P., Rieckh, G.: Redundant representation of operators. arXiv:1612.06130

  14. Balazs, P., Shamsabadi, M., Arefijamaal, A.A.,  Gardon, C.: Representation of operators using fusion frames (preprint) arXiv:2007.06466

  15. Balazs, P., Shamsabadi, M., Arefijamaal, A.A., Rahimi, A.: \(U\)-cross Gram matrices and their invertibility. J. Math. Anal. Appl. 476(2), 367–390 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Balazs, P., Stoeva, D.: Representation of the inverse of a multiplier. J. Math. Anal. Appl. 422, 981–994 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Benedetto, J., Ferreira, P.: Modern Sampling Theory. Mathematics and Applications. Birkhäuser, Basel (2001)

    MATH  Google Scholar 

  18. Bodmann, B.G., Casazza, P.G.: The road to equal-norm Parseval frames. J. Funct. Anal. 258(2), 397–420 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Bölcskei, H., Hlawatsch, F., Feichtinger, H.G.: Frame-theoretic analysis of oversampled filter banks. IEEE Trans. Signal Process. 46(12), 3256–3268 (1998)

    Google Scholar 

  20. Casazza, P.G., Kutyniok, G.: Frames of subspaces. In: Cont. Math. (2004)

  21. Casazza, P.G., Kutyniok, G., Li, S.: Fusion frames and distributed processing. Appl. Comput. Harmon. Anal. 254(1), 114–132 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Christensen, O.: Frames and Bases. An Introductory Course. Applied and Numerical Harmonic Analysis. Birkhäuser, Basel (2008)

    MATH  Google Scholar 

  23. Christensen, O., Laugesen, R.S.: Approximately dual frames in Hilbert spaces and applications to Gabor frames. Sampl. Theory Signal Image Process. 9(3), 77–89 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Cotfas, N., Gazeau, J.P.: Finite tight frames and some applications. J. Phys. A 43(19), 193001 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Dahlke, S., Raasch, T., Werner, M., Fornasier, M., Stevenson, R.: Adaptive frame methods for elliptic operator equations: the steepest descent approach. IMA J. Numer. Anal. 27(4), 717–740 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Daubechies, I., Grossmann, A., Meyer, Y.: Painless non-orthogonal expansions. J. Math. Phys. 27, 1271–1283 (1986)

    MathSciNet  MATH  Google Scholar 

  27. Douglas, R.G.: On majorization, factorization and range inclusion of operators on Hilbert space. Proc. Am. Math. Soc. 17(2), 413–415 (1996)

    MathSciNet  MATH  Google Scholar 

  28. Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72, 341–366 (1952)

    MathSciNet  MATH  Google Scholar 

  29. Ellouz, H., Feki, I., Jeribi, A.: Non-orthogonal fusion frames of an analytic operator and application to a one-dimensional wave control system. Mediterr. J. Math. 16, 52 (2019). 10.1007/s00009-019-1318-x

    MathSciNet  MATH  Google Scholar 

  30. Feichtinger, H.G., Strohmer, T.: Gabor Analysis and Algorithms—Theory and Applications. Birkhäuser, Boston (1998)

    MATH  Google Scholar 

  31. Führ, H., Lemvig, J.: System bandwidth and the existence of generalized shift-invariant frames. J. Funct. Anal. 276(2), 563–601 (2019)

    MathSciNet  MATH  Google Scholar 

  32. Gaul, L., Kögler, M., Wagner, M.: Boundary Element Methods for Engineers and Scientists. Springer, Berlin (2003)

    Google Scholar 

  33. Gǎvruţa, P.: On the duality of fusion frames. J. Math. Anal. Appl. 333(2), 871–879 (2007)

    MathSciNet  MATH  Google Scholar 

  34. Gohberg, I., Goldberg, S., Kaashoek, M.A.: Basic Classes of Linear Operators. Birkhäuser, Basel (2003)

    MATH  Google Scholar 

  35. Gröchenig, K.: Foundations of Time-Frequency Analysis. Birkhäuser, Boston (2001)

    MATH  Google Scholar 

  36. Harbrecht, H., Schneider, R., Schwab, C.: Multilevel frames for sparse tensor product spaces. Numer. Math. 110(2), 199–220 (2008)

    MathSciNet  MATH  Google Scholar 

  37. Hashemi, B., Khodabin, M., Maleknejad, K.: Numerical solution based on hat functions for solving nonlinear stochastic It\(\hat{\rm o}\) volterra integral equations driven by fractional Brownian motion. Mediterr. J. Math. 14, 24 (2017). https://doi.org/10.1007/s00009-016-0820-7

    Article  MATH  Google Scholar 

  38. Heineken, S.B., Morillas, P.: Properties of finite dual fusion frames. Linear Algebra Appl. 453, 1–27 (2014)

    MathSciNet  MATH  Google Scholar 

  39. Heineken, S.B., Morillas, P., Benavente, A., Zakowicz, M.: Dual fusion frames. Arch. Math. (Basel) 103(4), 355–365 (2014)

    MathSciNet  MATH  Google Scholar 

  40. Kreuzer, W., Majdak, P., Chen, Z.: Fast multipole boundary element method to calculate head-related transfer functions for a wide frequency range. J. Acoust. Soc. Am. 126(3), 1280–1290 (2009)

    Google Scholar 

  41. Marelli, D., Fu, M.: Performance analysis for subband identification. IEEE Trans. Signal Process. 51(12), 3128–3142 (2003)

    MathSciNet  MATH  Google Scholar 

  42. Oswald, P.: Stable space splittings and fusion frames. In: Goyal, V., Papadakis, M., Van de Ville, D. (eds.) Wavelets XIII, Proceedings of SPIE San Diego, vol. 7446 (2009)

  43. Pietsch, A.: Operator Ideals. North-Holland Publishing Company, Amsterdam (1980)

    MATH  Google Scholar 

  44. Schatten, R.: Norm Ideals of Completely Continuous Operators. Springer, Berlin (1960)

    MATH  Google Scholar 

  45. Shamsabadi, M., Arefijamaal, A.A.: The invertibility of fusion frame multipliers. Linear Multilinear Algebra 65(5), 1062–1072 (2016)

    MathSciNet  MATH  Google Scholar 

  46. Speckbacher, M., Balazs, P.: Reproducing pairs and the continuous nonstationary Gabor transform on lca groups. J. Phys. A 48, 395201 (2015)

    MathSciNet  MATH  Google Scholar 

  47. Stevenson, R.: Adaptive solution of operator equations using wavelet frames. SIAM J. Numer. Anal. 41(3), 1074–1100 (2003)

    MathSciNet  MATH  Google Scholar 

  48. Stoeva, D.T., Balazs, P.: Invertibility of multipliers. Appl. Comput. Harmon. Anal. 33(2), 292–299 (2012)

    MathSciNet  MATH  Google Scholar 

  49. Sun, W.: G-frames and g-Riesz bases. J. Math. Anal. Appl. 322(1), 437–452 (2006)

    MathSciNet  MATH  Google Scholar 

  50. Weidmann, J.: Linear Operators in Hilbert Spaces. Springer, New York (1980)

    MATH  Google Scholar 

Download references

Acknowledgements

The first and the second authors were supported in part by the Iranian National Science Foundation (INSF) under Grant 97018155. The last author was partly supported by the START project FLAME Y551-N13 of the Austrian Science Fund (FWF) and the DACH project BIOTOP I-1018-N25 of Austrian Science Fund (FWF). He also thanks Nora Simovich for help with typing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Akbar Arefijamaal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamsabadi, M., Arefijamaal, A.A. & Balazs, P. The Invertibility of U-Fusion Cross Gram Matrices of Operators. Mediterr. J. Math. 17, 130 (2020). https://doi.org/10.1007/s00009-020-01536-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-020-01536-0

Keywords

Mathematics Subject Classification

Navigation