Skip to main content
Log in

Reticulated Vitreous Carbon Foams from Sucrose: Promising Materials for Bone Tissue Engineering Applications

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Reticulated vitreous carbon (RVC) foams have shown favorable biocompatibility and the potential to support osteoblastic adhesion. In this work, RVC foams were fabricated via template route, using a low-cost sucrose-based resin. The effect of several process parameters, such as template porosity (cell size between 500 and 1400 µm) and carbonization conditions, were studied. The resulting RVC foams displayed highly interconnected porosity (> 85%) with controllable cell size, bone-like morphology, and compressive strength of 0.06–0.26 MPa. The results suggested that the decrease in the cell size of the sacrificial sponge, the increase in the thickness of the sponge cell ligaments, and the carbonization temperature of 1500 °C, contributed to the enhancement of the mechanical response of the fabricated scaffolds. Finally, cytotoxicity and cell adhesion assays were carried out using normal human osteoblasts as a preliminary assessment of the cytocompatibility of the synthesized RVC foams. Although the mechanical strength of these foams could still be improved, these results contribute towards the development of low-cost bioactive scaffolds that resemble the morphological properties of the trabecular bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Arabnejad, R. Burnett Johnston, J. A. Pura, B. Singh, M. Tanzer, and D. Pasini, Acta Biomater., 30, 345 (2016).

    CAS  PubMed  Google Scholar 

  2. G. H. Billström, A. W. Blom, S. Larsson, and A. D. Beswick, Injury, 44, S28 (2013).

    PubMed  Google Scholar 

  3. L. Bacakova, E. Filova, M. Parizek, T. Ruml, and V. Svorcik, Biotechnol. Adv., 29, 739 (2011).

    CAS  PubMed  Google Scholar 

  4. D. E. Discher, P. Janmey, and Y. L. Wang, Science, 310, 1139 (2005).

    CAS  PubMed  Google Scholar 

  5. X. Wang, S. Xu, S. Zhou, W. Xu, M. Leary, P. Choong, M. Qian, M. Brandt, and Y. M. Xie, Biomaterials, 83, 127 (2016).

    CAS  PubMed  Google Scholar 

  6. Q. Fu, E. Saiz, M. N. Rahaman, and A. P. Tomsia, Mater. Sci. Eng. C, 31, 1245 (2011).

    CAS  Google Scholar 

  7. M. Ramalingam, Z. Haidar, S. Ramakrishna, H. Kobayashi, and Y. Haikel, Eds., Integrated Biomaterials in Tissue Engineering, Wiley, 2012.

  8. D. Yoo, Mater. Sci. Eng. C, 33, 1759 (2013).

    CAS  Google Scholar 

  9. S. Wu, X. Liu, K. W. K. Yeung, C. Liu, and X. Yang, Mater. Sci. Eng. R, 80, 1 (2014).

    Google Scholar 

  10. H. Janik and M. Marzec, Mater. Sci. Eng. C, 48, 586 (2015).

    CAS  Google Scholar 

  11. L. Polo-Corrales, M. Latorre-Esteves, and J. E. Ramirez-Vick, J. Nanosci. Nanotechnol., 14, 15 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. D. Tang, R. S. Tare, L. Y. Yang, D. F. Williams, K. L. Ou, and R. O. C. Oreffo, Biomaterials, 83, 363 (2016).

    CAS  PubMed  Google Scholar 

  13. D. Puppi, C. Mota, M. Gazzarri, D. Dinucci, A. Gloria, M. Myrzabekova, L. Ambrosio, and F. Chiellini, Biomed. Microdevices, 14, 1115 (2012).

    CAS  PubMed  Google Scholar 

  14. E. Marchetti, O. May, J. Girard, H.-F. Hildebrand, H. Migaud, and G. Pasquier, EMC - Técnicas Quirúrgicas - Ortop. Traumatol., 2, 1 (2010).

    Google Scholar 

  15. S. M. Giannitelli, F. Basoli, P. Mozetic, P. Piva, F. N. Bartuli, F. Luciani, C. Arcuri, M. Trombetta, A. Rainer, and S. Licoccia, Mater. Sci. Eng. C, 51, 329 (2015).

    CAS  Google Scholar 

  16. N. Venkataraman, S. Bansal, P. Bansal, and S. Narayan, J. Int. Clin. Dent. Res. Organ., 7, 40 (2015).

    Google Scholar 

  17. J. R. Jones, Acta Biomater., 23, S53 (2015).

    PubMed  Google Scholar 

  18. M. K. Pec, R. Reyes, E. Sánchez, D. Carballar, A. Delgado, J. Santamaría, M. Arruebo, and C. Evora, Eur. Cells Mater., 20, 282 (2010).

    CAS  Google Scholar 

  19. J. S. Czarnecki, M. Blackmore, S. Jolivet, K. Lafdi, and P. A. Tsonis, Carbon, 79, 135 (2014).

    CAS  Google Scholar 

  20. F. C. Walsh, L. F. Arenas, C. P. de León, G. W. Reade, I. Whyte, and B. G. Mellor, Electrochim. Acta, 215, 566 (2016).

    CAS  Google Scholar 

  21. C. Chen, E. B. Kennel, A. H. Stiller, P. G. Stansberry, and J. W. Zondlo, Carbon, 44, 1535 (2006).

    CAS  Google Scholar 

  22. O. Smorygo, A. Marukovich, V. Mikutski, and A. Pramono, Front. Mater. Sci., 9, 413 (2015).

    Google Scholar 

  23. P. E. Ferrari and M. C. Rezende, Polímeros, 8, 22 (1998).

    CAS  Google Scholar 

  24. A. S. Mistry and A. G. Mikos, in Regenerative Medicine II, I. V. Yannas, Ed., Springer, Berlin Heidelberg, 2005, vol. 94, pp 1–22.

  25. K. Geramita, B. Kron, H. Constantino, A. Feaver, A. Sakshaug, L. Thompkins, A. Chang, X. Dong, S. Qureshi, J. Hines, G. Knazek, and J. Ludvik, U.S. Patent 10173900B2 (2014).

  26. L. D. Claxton, Mutat. Res. - Rev. Mutat. Res., 763, 103 (2015).

    CAS  PubMed  Google Scholar 

  27. G. Nam, S. Choi, H. Byun, Y. M. Rhym, and S. E. Shim, Macromol. Res., 21, 958 (2013).

    CAS  Google Scholar 

  28. M. Inagaki, Carbon, 87, 128 (2015).

    CAS  Google Scholar 

  29. O. Smorygo, A. Marukovich, V. Mikutski, and V. Stathopoulos, Front. Mater. Sci., 10, 157 (2016).

    Google Scholar 

  30. S. Farhan, R. M. Wang, H. Jiang, and N. Ul-Haq, J. Anal. Appl. Pyrolysis, 110, 229 (2014).

    CAS  Google Scholar 

  31. M. Letellier, C. Delgado-sanchez, M. Khelifa, V. Fierro, and A. Celzard, Carbon, 116, 562 (2017).

    CAS  Google Scholar 

  32. P. Jana, V. Fierro, A. Pizzi, and A. Celzard, Mater. Des., 83, 635 (2015).

    CAS  Google Scholar 

  33. T. R. Brazil, M. R. Baldan, M. Massi, and M. C. Rezende, Mater. Today Proc., 4, 11617 (2017).

    Google Scholar 

  34. R. Narasimman and K. Prabhakaran, Carbon, 55, 305 (2013).

    CAS  Google Scholar 

  35. P. Jana, V. Fierro, and A. Celzard, Carbon, 62, 517 (2013).

    CAS  Google Scholar 

  36. P. Jana, V. Fierro, and A. Celzard, Ind. Crops Prod., 89, 498 (2016).

    CAS  Google Scholar 

  37. R. Kumar, V. More, S. P. Mohanty, S. S. Nemala, S. Mallick, and P. Bhargava, J. Colloid Interface Sci., 459, 146 (2015).

    CAS  PubMed  Google Scholar 

  38. Y. Yao, F. Chen, X. Chen, Q. Shen, and L. Zhang, Diam. Relat. Mater., 64, 153 (2016).

    CAS  Google Scholar 

  39. G. Tondi, V. Fierro, A. Pizzi, and A. Celzard, Carbon, 47, 1480 (2009).

    CAS  Google Scholar 

  40. G. Amaral-Labat, M. Sahimi, A. Pizzi, V. Fierro, and A. Celzard, Phys. Rev. E, 87, 032156 (2013).

    Google Scholar 

  41. Y. Yao, F. Chen, X. Chen, Q. Shen, and L. Zhang, Data Brief, 7, 117 (2016).

    PubMed  PubMed Central  Google Scholar 

  42. S. C. Sharma, K. Prabhakaran, P. K. Singh, N. M. Gokhale, and S. C. Sharma, J. Mater. Sci., 42, 3894 (2007).

    Google Scholar 

  43. Y. Chen, B.-Z. Chen, X.-C. Shi, H. Xu, Y.-J. Hu, Y. Yuan, and N.-B. Shen, Carbon, 45, 2132 (2007).

    CAS  Google Scholar 

  44. F. K. Juillerat, R. Engeli, I. Jerjen, P. N. Sturzenegger, F. Borcard, L. Juillerat-Jeanneret, S. Gerber-Lemaire, L. J. Gauckler, and U. T. Gonzenbach, J. Eur. Ceram. Soc., 33, 1497 (2013).

    Google Scholar 

  45. M. A. A. Muhamad Nor, L. C. Hong, Z. Arifin Ahmad, and H. Md Akil, J. Mater. Process. Technol., 207, 235 (2008).

    CAS  Google Scholar 

  46. W. Wattanutchariya, 2013 IEEE International Conference on Industrial Engineering and Engineering Management, Bangkok, 2013, pp 1072–1076.

  47. C. S. Vinton and C. H. Franklin, U.S. Patent 3927186A (1975).

  48. P. Jana and V. Ganesan, Carbon, 47, 3001 (2009).

    CAS  Google Scholar 

  49. B. J. McEntire, B. S. Bal, M. N. Rahaman, J. Chevalier, and G. Pezzotti, J. Eur. Ceram. Soc., 35, 4327 (2015).

    CAS  Google Scholar 

  50. M. Letellier, A. Szczurek, M.-C. Basso, A. Pizzi, V. Fierro, O. Ferry, and A. Celzard, Carbon, 112, 208 (2017).

    CAS  Google Scholar 

  51. S. M. Manocha, K. Patel, and L. M. Manocha, Indian J. Eng. Mater. Sci., 17, 338 (2010).

    CAS  Google Scholar 

  52. K.-J. Lee, C.-H. Wu, H.-Z. Cheng, C.-C. Kuo, H.-C. Tseng, W.-K. Liao, S.-F. Wei, and S.-F. Huang, Procedia Eng., 36, 341 (2012).

    CAS  Google Scholar 

  53. H. Ji, Z. Huang, X. Wu, J. Huang, K. Chen, M. Fang, and Y. Liu, J. Mater. Res., 29, 1018 (2014).

    CAS  Google Scholar 

  54. C. Xue and B. Tu, Nano Res., 2, 242 (2009).

    CAS  Google Scholar 

  55. V. K. Balla, S. Bodhak, S. Bose, and A. Bandyopadhyay, Acta Biomater., 6, 3349 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. O. Smorygo, A. Marukovich, V. Mikutski, V. Stathopoulos, S. Hryhoryeu, and V. Sadykov, Front Mater. Sci., 10, 157 (2016).

    Google Scholar 

  57. G. Tzvetkov, B. Tsyntsarski, K. Balashev, and T. Spassov, Micron, 89, 34 (2016).

    CAS  PubMed  Google Scholar 

  58. M. Šupová, J. Svítilová, Z. Chlup, M. Černý, Z. Weishauptová, T. Suchý, V. Machovič, Z. Sucharda, and M. Žaloudková, Ceramics-Silikáty, 56, 40 (2012).

    Google Scholar 

  59. E. S. Goncalves, M. C. Rezende, and N. G. Ferreira, Brazilian J. Phys., 36, 264 (2006).

    CAS  Google Scholar 

  60. E. S. Gonçalves, M. C. Rezende, M. R. Baldan, and N. G. Ferreira, Quim. Nova, 32, 158 (2009).

    Google Scholar 

  61. M. R. Baldan, E. C. Almeida, A. F. Azevedo, E. S. Gonçalves, M. C. Rezende, and N. G. Ferreira, Appl. Surf. Sci., 254, 600 (2007).

    CAS  Google Scholar 

  62. R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, and M. S. Dresselhaus, Adv. Phys., 60, 413 (2011).

    CAS  Google Scholar 

  63. A. K. M. R. H. Chowdhury, A. Tavangar, B. Tan, and K. Venkatakrishnan, Sci. Rep., 7, 1 (2017).

    Google Scholar 

  64. F. Zhang, A. Weidmann, J. B. Nebe, and E. Burkel, Mater. Sci. Eng. C, 32, 1057 (2012).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from Vicerrectoría de Investigación y Extensión at Universidad Industrial de Santander (UIS) - Project 1824. Also, the authors would like to especially thank Dr. Mariah Hahn at Rensselaer Polytechnic Institute (NY, USA) for her support on the cell studies, as well as the Microscopy Laboratory at UIS for their technical assistance with the SEM analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Natalia Terán Acuña, Viviana Güiza-Argüello or Elcy Córdoba-Tuta.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acuña, N.T., Güiza-Argüello, V. & Córdoba-Tuta, E. Reticulated Vitreous Carbon Foams from Sucrose: Promising Materials for Bone Tissue Engineering Applications. Macromol. Res. 28, 888–895 (2020). https://doi.org/10.1007/s13233-020-8128-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8128-7

Keywords

Navigation