Skip to main content

Advertisement

Log in

Size-dependent analysis of a functionally graded piezoelectric micro-cylinder based on the strain gradient theory with the consideration of flexoelectric effect: plane strain problem

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this study, a size-dependent analysis of functionally graded piezoelectric (FGP) micro-rotating cylinder is presented based on the plane strain condition and strain gradient theory, which is a non-classical theory capable of capturing the size effect in microscaled structures. The present model is used to analyze the FGP micro-rotating cylinder with the consideration of flexoelectric effects exposed to a symmetric magneto-electro-mechanical loading. All mechanical and electrical properties are assumed to be graded in the thickness direction according to a power-law distribution. With respect to the fifth-order strain gradient coefficient and electromechanical coupling, the constitutive equations are obtained from electric Gibbs free energy density, which is a function of strain, second-order deformation gradient and electric field. By substituting the constitutive equations in electric and mechanical equilibrium equations, two coupled electromechanical governing differential equations in terms of radial displacement and electric potential are derived considering centrifugal force and Lorentz magnetic force obtained from Maxwell’s relations. The generalized differential quadrature method is proposed to solve the coupled governing differential equations. Numerical results attained from the strain gradient elasticity reveal the effects of flexoelectric, microstructural length scale, non-homogeneity constant, rotation and magnetic field on the response of the FGP micro-rotating cylinder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Rajurkar KP, Levy G, Malshe A, Sundaram MM, McGeough J, Hu X, Resnick R, DeSilva A (2006) Micro and nano machining by electro-physical and chemical processes. CIRP Ann Manuf Technol 55(2):643–666

    Google Scholar 

  2. Liu X, Su C-Y, Yang F (2016) FNN approximation-based active dynamic surface control for suppressing chatter in micro-milling with piezo-actuators. IEEE Trans Syst Man Cybern Syst 47:2100–2113

    Google Scholar 

  3. Xu L, Shen S (2013) Size-dependent piezoelectricity and elasticity due to the electric field-strain gradient coupling and strain gradient elasticity. Int J Appl Mech 05(02):1350015

    Google Scholar 

  4. Yan Z, Jiang L (2011) Electromechanical response of a curved piezoelectric nanobeam with the consideration of surface effects. J Phys D Appl Phys 44(36):365301

    Google Scholar 

  5. Witvrouw A, Mehta A (2005) The use of functionally graded poly-SiGe layers for MEMS applications. Mater Sci Forum 492–493:255–260

    Google Scholar 

  6. Tsai N-C, Liou J-S, Lin C-C, Li T (2010) Design of micro-electromagnetic drive on reciprocally rotating disc used for micro-gyroscopes. Sens Actuators, A 157(1):68–76

    Google Scholar 

  7. Tsai N-C, Sue C-Y (2010) Experimental analysis and characterization of electrostatic-drive tri-axis micro-gyroscope. Sens Actuators, A 158(2):231–239

    Google Scholar 

  8. Lee S, Kim D, Jin Y, Han Y, Desta Y, Bryant MD, Goettert J (2004) A Micro corona motor fabricated by a SU-8 built-on X-ray mask. Microsyst Technol 10(6):522–526

    Google Scholar 

  9. Lee S, Kim D, Bryant MD, Ling FF (2005) A micro corona motor. Sens Actuators, A 118(2):226–232

    Google Scholar 

  10. Kim J, Lee S-K (2016) Micro-patterning technique using a rotating cutting tool controlled by an electromagnetic actuator. Int J Mach Tools Manuf 101:52–64

    Google Scholar 

  11. Aurich JC, Engmann J, Schueler GM, Haberland R (2009) Micro grinding tool for manufacture of complex structures in brittle materials. CIRP Ann Manuf Technol 58(1):311–314

    Google Scholar 

  12. Dai HL, Fu YM, Yang JH (2007) Electromagnetoelastic behaviors of functionally graded piezoelectric solid cylinder and sphere. Acta Mech Sin 23(1):55–63

    MATH  Google Scholar 

  13. Pan E, Han F (2005) Exact solution for functionally graded and layered magneto-electro-elastic plates. Int J Eng Sci 43(3–4):321–339

    Google Scholar 

  14. Akbarzadeh AH, Chen ZT (2013) Magnetoelastic field of a multilayered and functionally graded cylinder with a dynamic polynomial eigenstrain. J Appl Mech 81(2):021009–021013

    Google Scholar 

  15. Dini A, Nematollahi MA, Hosseini M (2019) Analytical solution for magneto-thermo-elastic responses of an annular functionally graded sandwich disk by considering internal heat generation and convective boundary condition. J Sandw Struct Mater. https://doi.org/10.1177/1099636219839161

    Article  Google Scholar 

  16. Nematollahi MA, Dini A, Hosseini M (2019) Thermo-magnetic analysis of thick-walled spherical pressure vessels made of functionally graded materials. Appl Math Mech 40(6):751–766

    MathSciNet  MATH  Google Scholar 

  17. Akbarzadeh AH, Pasini D (2013) Multiphysics of multilayered and functionally graded cylinders under prescribed hygrothermomagnetoelectromechanical loading. J Appl Mech 81(4):041015–041018

    Google Scholar 

  18. Dini A, Abolbashari MH (2016) Hygro-thermo-electro-elastic response of a functionally graded piezoelectric cylinder resting on an elastic foundation subjected to non-axisymmetric loads. Int J Press Vessels Pip 147:21–40

    Google Scholar 

  19. Keles I, Tutuncu N (2011) Exact analysis of axisymmetric dynamic response of functionally graded cylinders (or disks) and spheres. J Appl Mech 78(6):061014–061017

    Google Scholar 

  20. Dai H-L, Zheng Z-Q, Dai T (2017) Investigation on a rotating FGPM circular disk under a coupled hygrothermal field. Appl Math Model 46:28–47

    MathSciNet  MATH  Google Scholar 

  21. Galic D, Horgan CO (2003) The stress response of radially polarized rotating piezoelectric cylinders. J Appl Mech 70(3):426

    MATH  Google Scholar 

  22. Danesh V, Asghari M (2013) Analysis of micro-rotating disks based on the strain gradient elasticity. Acta Mech 225(7):1955–1965

    MATH  Google Scholar 

  23. Gao XL, Park SK (2007) Variational formulation of a simplified strain gradient elasticity theory and its application to a pressurized thick-walled cylinder problem. Int J Solids Struct 44(22–23):7486–7499

    MATH  Google Scholar 

  24. Gao XL, Park SK, Ma HM (2009) Analytical solution for a pressurized thick-walled spherical shell based on a simplified strain gradient elasticity theory. Math Mech Solids 14(8):747–758

    MathSciNet  MATH  Google Scholar 

  25. Sadeghi H, Baghani M, Naghdabadi R (2012) Strain gradient elasticity solution for functionally graded micro-cylinders. Int J Eng Sci 50(1):22–30

    MathSciNet  MATH  Google Scholar 

  26. Hosseini M, Dini A, Eftekhari M (2017) Strain gradient effects on the thermoelastic analysis of a functionally graded micro-rotating cylinder using generalized differential quadrature method. Acta Mech 228(5):1563–1580

    MathSciNet  MATH  Google Scholar 

  27. Capecchi D, Ruta G, Trovalusci P (2011) Voigt and Poincaré’s mechanistic–energetic approaches to linear elasticity and suggestions for multiscale modelling. Arch Appl Mech 81(11):1573–1584

    MATH  Google Scholar 

  28. Trovalusci P, Capecchi D, Ruta G (2008) Genesis of the multiscale approach for materials with microstructure. Arch Appl Mech 79(11):981

    MATH  Google Scholar 

  29. Trovalusci P (2014) Molecular approaches for multifield continua: origins and current developments. In: Sadowski T, Trovalusci P (eds) Multiscale modeling of complex materials: phenomenological, theoretical and computational aspects. Springer, Vienna, pp 211–278

    Google Scholar 

  30. Reddy JN, Pang SD (2008) Nonlocal continuum theories of beams for the analysis of carbon nanotubes. J Appl Phys 103(2):023511

    Google Scholar 

  31. Peddieson J, Buchanan GR, McNitt RP (2003) Application of nonlocal continuum models to nanotechnology. Int J Eng Sci 41(3):305–312

    Google Scholar 

  32. Reddy JN (2007) Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci 45(2–8):288–307

    MATH  Google Scholar 

  33. Yang F, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39(10):2731–2743

    MATH  Google Scholar 

  34. Park SK, Gao XL (2006) Bernoulli–Euler beam model based on a modified couple stress theory. J Micromech Microeng 16(11):2355–2359

    Google Scholar 

  35. Reddy JN (2011) Microstructure-dependent couple stress theories of functionally graded beams. J Mech Phys Solids 59(11):2382–2399

    MathSciNet  MATH  Google Scholar 

  36. Aifantis EC (1994) Gradient effects at macro, micro, and nano scales. J Mech Behav Mater 5:355

    Google Scholar 

  37. Aifantis EC (1999) Strain gradient interpretation of size effects. Int J Fract 95(1):299

    Google Scholar 

  38. Lazopoulos KA (2004) On the gradient strain elasticity theory of plates. Eur J Mech A Solids 23(5):843–852

    MathSciNet  MATH  Google Scholar 

  39. Altan BS, Aifantis EC (1997) On some aspects in the special theory of gradient elasticity. J Mech Behav Mater 8:231–282

    Google Scholar 

  40. Exadaktylos G, Vardoulakis I, Aifantis E (1996) Cracks in gradient elastic bodies with surface energy. Int J Fract 79(2):107–119

    MATH  Google Scholar 

  41. Exadaktylos G (1998) Gradient elasticity with surface energy: mode-I crack problem. Int J Solids Struct 35(5):421–456

    MathSciNet  MATH  Google Scholar 

  42. Guo J-G, Zhao Y-P (2007) The size-dependent bending elastic properties of nanobeams with surface effects. Nanotechnology 18(29):295701

    Google Scholar 

  43. Fu Y, Zhang J, Jiang Y (2010) Influences of the surface energies on the nonlinear static and dynamic behaviors of nanobeams. Physica E 42(9):2268–2273

    Google Scholar 

  44. Yan Z, Jiang LY (2011) The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Nanotechnology 22(24):245703

    Google Scholar 

  45. Shaat M, Mohamed SA (2014) Nonlinear-electrostatic analysis of micro-actuated beams based on couple stress and surface elasticity theories. Int J Mech Sci 84:208–217

    Google Scholar 

  46. Tadi Beni Y (2016) Size-dependent analysis of piezoelectric nanobeams including electro-mechanical coupling. Mech Res Commun 75:67–80

    Google Scholar 

  47. Tadi Beni Y (2016) Size-dependent electromechanical bending, buckling, and free vibration analysis of functionally graded piezoelectric nanobeams. J Intell Mater Syst Struct 27(16):2199–2215

    Google Scholar 

  48. Xu L, Wenjun Y, Shuling H, Shengping S (2016) Buckling and vibration of flexoelectric nanofilms subjected to mechanical loads. J Phys D Appl Phys 49(11):115307

    Google Scholar 

  49. Chu L, Dui G, Ju C (2018) Flexoelectric effect on the bending and vibration responses of functionally graded piezoelectric nanobeams based on general modified strain gradient theory. Compos Struct 186:39–49

    Google Scholar 

  50. Lazopoulos KA, Lazopoulos AK (2010) Bending and buckling of thin strain gradient elastic beams. Eur J Mech A Solids 29(5):837–843

    MathSciNet  Google Scholar 

  51. Rajabi F, Ramezani S (2011) A nonlinear microbeam model based on strain gradient elasticity theory with surface energy. Arch Appl Mech 82(3):363–376

    MATH  Google Scholar 

  52. Mahmoud FF, Eltaher MA, Alshorbagy AE, Meletis EI (2013) Static analysis of nanobeams including surface effects by nonlocal finite element. J Mech Sci Technol 26(11):3555–3563

    Google Scholar 

  53. Mariano PM, Trovalusci P (1999) Constitutive relations for elastic microcracked bodies: from a lattice model to a multifield continuum description. Int J Damage Mech 8(2):153–173

    Google Scholar 

  54. Li A, Zhou S, Zhou S, Wang B (2014) Size-dependent analysis of a three-layer microbeam including electromechanical coupling. Compos Struct 116:120–127

    Google Scholar 

  55. Zhi Y, Liying J (2013) Size-dependent bending and vibration behaviour of piezoelectric nanobeams due to flexoelectricity. J Phys D Appl Phys 46(35):355502

    Google Scholar 

  56. Zhang Z, Jiang L (2014) Size effects on electromechanical coupling fields of a bending piezoelectric nanoplate due to surface effects and flexoelectricity. J Appl Phys 116(13):134308

    Google Scholar 

  57. Reccia E, De Bellis ML, Trovalusci P, Masiani R (2018) Sensitivity to material contrast in homogenization of random particle composites as micropolar continua. Compos B Eng 136:39–45

    Google Scholar 

  58. Yan Z (2017) Modeling of a nanoscale flexoelectric energy harvester with surface effects. Physica E 88:125–132

    Google Scholar 

  59. Ray MC (2014) Exact solutions for flexoelectric response in nanostructures. J Appl Mech 81(9):091002–091007

    Google Scholar 

  60. Bellman R, Kashef BG, Casti J (1972) Differential quadrature- A technique for the rapid solution of nonlinear partial differential equation. J Comput Phys 10:40–52

    MathSciNet  MATH  Google Scholar 

  61. Tornabene F, Viola E (2008) 2-D solution for free vibrations of parabolic shells using generalized differential quadrature method. Eur J Mech A Solids 27(6):1001–1025

    MATH  Google Scholar 

  62. Chen WQ, Lv CF, Bian ZG (2004) Free vibration analysis of generally laminated beams via state-space-based differential quadrature. Compos Struct 63(3–4):417–425

    Google Scholar 

  63. Tornabene F, Fantuzzi N, Ubertini F, Viola E (2015) Strong formulation finite element method based on differential quadrature: a survey. Appl Mech Rev 67(2):020801–020855

    Google Scholar 

  64. Tornabene F, Fantuzzi N, Bacciocchi M, Dimitri R (2015) Free vibrations of composite oval and elliptic cylinders by the generalized differential quadrature method. Thin-Walled Struct 97:114–129

    Google Scholar 

  65. Bert CW, Malik M (1996) Free vibration analysis of thin cylindrical shells by the differential quadrature method. J Press Vessel Technol 118:1–12

    Google Scholar 

  66. Wang X, Wang Y, Yuan Z (2014) Accurate vibration analysis of skew plates by the new version of the differential quadrature method. Appl Math Model 38(3):926–937

    MathSciNet  MATH  Google Scholar 

  67. Alibeigloo A, Alizadeh M (2015) Static and free vibration analyses of functionally graded sandwich plates using state space differential quadrature method. Eur J Mech A Solids 54:252–266

    MathSciNet  MATH  Google Scholar 

  68. Mindlin RD (1965) Second gradient of strain and surface-tension in linear elasticity. Int J Solids Struct 1:417–438

    Google Scholar 

  69. Lam DCC, Yang F, Chong ACM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51(8):1477–1508

    MATH  Google Scholar 

  70. Oates WS (2017) Flexoelectricity, strain gradients, and singularities in ferroelectric nanostructures. J Intell Mater Syst Struct 28(20):3091–3105

    Google Scholar 

  71. He L, Lou J, Zhang A, Wu H, Du J, Wang J (2017) On the coupling effects of piezoelectricity and flexoelectricity in piezoelectric nanostructures. AIP Adv 7(10):105106

    Google Scholar 

  72. Deng Q, Kammoun M, Erturk A, Sharma P (2014) Nanoscale flexoelectric energy harvesting. Int J Solids Struct 51(18):3218–3225

    Google Scholar 

  73. Shen Z, Chen W (2012) Converse flexoelectric effect in comb electrode piezoelectric microbeam. Phys Lett A 376(19):1661–1663

    Google Scholar 

  74. Deng Q, Liu L, Sharma P (2014) Flexoelectricity in soft materials and biological membranes. J Mech Phys Solids 62:209–227

    MathSciNet  MATH  Google Scholar 

  75. Deng Q, Liu L, Sharma P (2014) Electrets in soft materials: nonlinearity, size effects, and giant electromechanical coupling. Phys Rev E 90(1):012603

    Google Scholar 

  76. Ahmadpoor F, Sharma P (2015) Flexoelectricity in two-dimensional crystalline and biological membranes. Nanoscale 7(40):16555–16570

    Google Scholar 

  77. Zubko P, Catalan G, Tagantsev AK (2013) Flexoelectric effect in solids. Annu Rev Mater Res 43:387–421

    Google Scholar 

  78. Hu S, Shen S (2010) Variational principles and governing equations in nano-dielectrics with the flexoelectric effect. Sci China Phys Mech Astron 53(8):1497–1504

    Google Scholar 

  79. Mao S, Purohit PK (2014) Insights into flexoelectric solids from strain-gradient elasticity. J Appl Mech 81(8):081004

    Google Scholar 

  80. Hosseini M, Dini A (2015) Magneto-thermo-elastic response of a rotating functionally graded cylinder. Struct Eng Mech 56(1):137–156

    Google Scholar 

  81. Wu TY, Liu GR (2000) The generalized differential quadrature rule for initial-value differential equations. J Sound Vib 233(2):195–213

    MathSciNet  MATH  Google Scholar 

  82. Liu GR, Wu TY (2001) Vibration analysis of beams using the generalized differential quadrature rule and domain decomposition. J Sound Vib 246(3):461–481

    Google Scholar 

  83. Bert CW, Malik M (1996) Differential quadrature method in computational mechanics—a review. Appl Mech Rev 49:1–28

    Google Scholar 

  84. Babaei MH, Chen ZT (2008) Analytical solution for the electromechanical behavior of a rotating functionally graded piezoelectric hollow shaft. Arch Appl Mech 78:489–500

    MATH  Google Scholar 

  85. Ma W, Cross LE (2005) Flexoelectric effect in ceramic lead zirconate titanate. Appl Phys Lett 86(7):072905

    Google Scholar 

  86. Shu L, Wei X, Pang T, Yao X, Wang C (2011) Symmetry of flexoelectric coefficients in crystalline medium. J Appl Phys 110(10):104106

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Dini.

Additional information

Technical Editor: Pedro Manuel Calas Lopes Pacheco, D.Sc.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

It is shown here that the total stress tensor has the following expression (see Eq. 13):

$$ \begin{aligned}\varvec{\sigma}& = \left\{ {\left( {1 - \frac{{\ell_{r} }}{r}} \right)A_{rr} - L^{2} \left[ {A_{rr}^{{{\prime \prime }}} + \frac{{A_{rr}^{{\prime }} }}{r} - \frac{2}{{r^{2} }}\left( {A_{rr} - A_{\theta \theta } } \right)} \right] - e_{11} E_{r} + \left[ {f_{11} E_{r}^{{\prime }} + \left( {f_{11} - 2f_{46} } \right)\frac{{E_{r} }}{r}} \right]} \right\}e_{r} \otimes e_{r} \\ & \quad + \;\left\{ {\left( {1 - \frac{{\ell_{r} }}{r}} \right)A_{\theta \theta } - L^{2} \left[ {A_{\theta \theta }^{{{\prime \prime }}} + \frac{{A_{\theta \theta }^{{\prime }} }}{r} + \frac{2}{{r^{2} }}\left( {A_{rr} - A_{\theta \theta } } \right)} \right] - e_{21} E_{r} + \left[ {f_{15} E_{r}^{{\prime }} + \left( {f_{15} + 2f_{46} } \right)\frac{{E_{r} }}{r}} \right]} \right\}e_{\theta } \otimes e_{\theta } . \\ \end{aligned} $$
(37)

Proof

A new second-order tensor \( \varvec{A} \) is defined for the sake of simplicity as:

$$ A_{ij} = C_{ijkl} \varepsilon_{kl} = A_{rr} e_{r} \otimes e_{r} + A_{\theta \theta } e_{\theta } \otimes e_{\theta } . $$
(38)

Substituting Eq. (38) into Eq. (6d), the total stress tensor is expressed in terms of components of the second-order tensor \( \varvec{A} \) as follows.

$$ \sigma_{ij} = A_{ij} - L^{2} A_{ij,pp} - l_{p,p} A_{ij} - e_{kij} E_{k} + \left( {f_{lijp} E_{l} } \right)_{,p} $$
(39)

Therefore, it follows from Eq. (39) that:

$$ \begin{aligned} A_{ij,p} & = \nabla \varvec{A} = \varvec{A} \otimes \nabla = \left( {A_{rr} e_{r} \otimes e_{r} + A_{\theta \theta } e_{\theta } \otimes e_{\theta } } \right) \otimes \left( {\frac{\partial }{\partial r}e_{r} + \frac{1}{r}\frac{\partial }{\partial \theta }e_{\theta } } \right) \\ & = A_{rr}^{{\prime }} e_{r} \otimes e_{r} \otimes e_{r} + \left( {\frac{{A_{rr} - A_{\theta \theta } }}{r}} \right)e_{r} \otimes e_{\theta } \otimes e_{\theta } + \left( {\frac{{A_{rr} - A_{\theta \theta } }}{r}} \right)e_{\theta } \otimes e_{r} \otimes e_{\theta } + A_{\theta \theta }^{{\prime }} e_{\theta } \otimes e_{\theta } \otimes e_{r} . \\ \end{aligned} $$
(40)

This gives the gradient of the second-order tensor \( \varvec{A} \) in the cylindrical coordinate system. Using Eq. (40), the Laplacian of the second-order tensor \( \varvec{A} \) is calculated as:

$$ \begin{aligned} A_{ij,pp} = \nabla^{2} \varvec{A} = \nabla \cdot \nabla \varvec{A} &= \left[ {A_{rr}^{{{\prime \prime }}} + \frac{{A_{rr}^{{\prime }} }}{r} - \frac{2}{{r^{2} }}\left( {A_{rr} - A_{\theta \theta } } \right)} \right]e_{r} \otimes e_{r} \\ & \quad + \left[ {A_{\theta \theta }^{{{\prime \prime }}} + \frac{{A_{\theta \theta }^{{\prime }} }}{r} + \frac{2}{{r^{2} }}\left( {A_{rr} - A_{\theta \theta } } \right)} \right]e_{\theta } \otimes e_{\theta } .\end{aligned} $$
(41)

Also, the divergence of vector \( \varvec{l} \) is written as:

$$ l_{p,p} = \nabla \cdot \varvec{l} = \left( {\frac{\partial }{\partial r}e_{r} + \frac{1}{r}\frac{\partial }{\partial \theta }e_{\theta } } \right) \cdot \left( {l_{r} e_{r} + l_{\theta } e_{\theta } } \right) = \frac{{l_{r} }}{r}. $$
(42)

Moreover, the last term of Eq. (39) can be calculated using tensor notation in the curvilinear coordinates as follows:

$$ \left( {f_{lijp} E_{l} } \right)_{,p} = \left[ {f_{1111} E_{r}^{{\prime }} + \left( {f_{1111} - f_{1221} - f_{1212} } \right)\frac{{E_{r} }}{r}} \right]e_{r} \otimes e_{r} + \left[ {f_{1122} E_{r}^{{\prime }} + \left( {f_{1122} + f_{1221} + f_{1212} } \right)\frac{{E_{r} }}{r}} \right]e_{\theta } \otimes e_{\theta } . $$
(43)

It is important to be mentioned that there are four independent flexoelectric coefficients (regarding only two coordinates \( 1 = r \) and \( 2 = \theta \)), which can be written as \( f_{1111} = f_{11} \), \( f_{1122} = f_{2211} = f_{15} \), \( f_{1221} = f_{1212} = f_{46} \) according to [86]. Thus, Eq. (43) is simplified as:

$$ \left( {f_{lijp} E_{l} } \right)_{,p} = \left[ {f_{11} E_{r}^{{\prime }} + \left( {f_{11} - 2f_{46} } \right)\frac{{E_{r} }}{r}} \right]e_{r} \otimes e_{r} + \left[ {f_{15} E_{r}^{{\prime }} + \left( {f_{15} + 2f_{46} } \right)\frac{{E_{r} }}{r}} \right]e_{\theta } \otimes e_{\theta } $$
(44)

where superscript “′” denotes first derivative with respect to radial coordinate \( r \). Substituting Eqs. (38), (41), (42) and (44) into Eq. (39) will give Eq. (37).

Similarly, the couple stress tensor in terms of components of the second-order tensor \( \varvec{A} \) can be rewritten using Eq. (6c) as:

$$ \mu_{ijp} = L^{2} A_{ij,p} + l_{p} A_{ij} - f_{lijp} E_{l} $$
(45)

Substituting Eqs. (38) and (40) into Eq. (45), the third-order tensor \( \varvec{\mu} \) can be determined as follows:

$$ \begin{aligned}\varvec{\mu}& = \left( {L^{2} A_{rr}^{{\prime }} + \ell_{r} A_{rr} - f_{11} E_{r} } \right)e_{r} \otimes e_{r} \otimes e_{r} + \left[ {L^{2} \left( {\frac{{A_{rr} - A_{\theta \theta } }}{r}} \right) - f_{46} E_{r} } \right]e_{r} \otimes e_{\theta } \otimes e_{\theta } \\ & \quad + \;\left[ {L^{2} \left( {\frac{{A_{rr} - A_{\theta \theta } }}{r}} \right) - f_{46} E_{r} } \right]e_{\theta } \otimes e_{r} \otimes e_{\theta } + \left( {L^{2} A_{\theta \theta }^{{\prime }} + \ell_{r} A_{\theta \theta } - f_{15} E_{r} } \right)e_{\theta } \otimes e_{\theta } \otimes e_{r} . \\ \end{aligned} $$
(46)

Also, the divergence of the third-order tensor \( \varvec{ \mu } \) can be calculated as below.

$$ \mu_{ijp,p} = \nabla \cdot\varvec{\mu}= \left[ {\frac{{\partial \mu_{rrr} }}{\partial r} + \frac{{\mu_{rrr} }}{r} - \frac{{\mu_{r\theta \theta } }}{r} - \frac{{\mu_{\theta r\theta } }}{r}} \right]e_{r} \otimes e_{r} + \left[ {\frac{{\partial \mu_{\theta \theta r} }}{\partial r} + \frac{{\mu_{r\theta \theta } }}{r} + \frac{{\mu_{\theta \theta r} }}{r} + \frac{{\mu_{\theta r\theta } }}{r}} \right]e_{\theta } \otimes e_{\theta } $$
(47)

Therefore, the stress components are obtained using Eqs. (6) and (47):

$$ \begin{aligned} \sigma_{ij} & = \tau_{ij} - \mu_{ijp,p} = \left[ {\tau_{rr} - \left( {\frac{{\partial \mu_{rrr} }}{\partial r} + \frac{{\mu_{rrr} }}{r} - \frac{{\mu_{r\theta \theta } }}{r} - \frac{{\mu_{\theta r\theta } }}{r}} \right)} \right]e_{r} \otimes e_{r} \\ & \quad + \;\left[ {\tau_{\theta \theta } - \left( {\frac{{\partial \mu_{\theta \theta r} }}{\partial r} + \frac{{\mu_{r\theta \theta } }}{r} + \frac{{\mu_{\theta \theta r} }}{r} + \frac{{\mu_{\theta r\theta } }}{r}} \right)} \right]e_{\theta } \otimes e_{\theta } \\ \end{aligned} $$
(48)

and the mechanical boundary conditions utilizing Eqs. (26) and (47).

$$ \begin{aligned} \left[ {\mu_{rrr} } \right]_{r = a, b} & = 0 \\ \left\{ {\tau_{rr} + \frac{{\mu_{r\theta \theta } }}{r} + \frac{{\mu_{\theta \theta r} }}{r} + \frac{{\mu_{\theta r\theta } }}{r} - \frac{{\mu_{rrr} }}{r} - \frac{{\partial \mu_{rrr} }}{\partial r}} \right\}_{r = a, b} & = - P_{i} , P_{o} \\ \end{aligned} $$
(49)

It is worthwhile to express that Eqs. (48) and (49) are another form of Eqs. (12) and (27) in order to derive stress components and mechanical boundary conditions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dini, A., Shariati, M., Zarghami, F. et al. Size-dependent analysis of a functionally graded piezoelectric micro-cylinder based on the strain gradient theory with the consideration of flexoelectric effect: plane strain problem. J Braz. Soc. Mech. Sci. Eng. 42, 410 (2020). https://doi.org/10.1007/s40430-020-02497-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02497-x

Keywords

Navigation