Skip to main content
Log in

Asymptotic Analysis for Overlap in Waveform Relaxation Methods for RC Type Circuits

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Waveform relaxation (WR) methods are based on partitioning large circuits into sub-circuits which then are solved separately for multiple time steps in so called time windows, and an iteration is used to converge to the global circuit solution in each time window. Classical WR converges quite slowly, especially when long time windows are used. To overcome this issue, optimized WR (OWR) was introduced which is based on optimized transmission conditions that transfer information between the sub-circuits more efficiently than classical WR. We study here for the first time the influence of overlapping sub-circuits in both WR and OWR applied to RC circuits. We give a circuit interpretation of the new transmission conditions in OWR, and derive closed form asymptotic expressions for the circuit elements representing the optimization parameter in OWR. Our analysis shows that the parameter is quite different in the overlapping case, compared to the non-overlapping one. We then show numerically that our optimized choice performs well, also for cases not covered by our analysis. This paper provides a general methodology to derive optimized parameters and can be extended to other circuits or system of differential equations or space–time PDEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. For an early approximate numerical optimization, see  [8], which followed a presentation of the first author at SciCADE 99 on why WR methods are slow, and a followup discussion. At the PDE level this problem is in the meantime much better understood, see [18] for a review.

References

  1. Al-Khaleel, M., Gander, M.J., Ruehli, A.E.: Optimized waveform relaxation solution of RLCG transmission line type circuits. In: 9th International Conference on Innovations in Information Technology (IIT), pp 136–140 (2013)

  2. Al-Khaleel, M., Gander, M.J., Ruehli, A.E.: A mathematical analysis of optimized waveform relaxation for a small RC circuit. In: 10th IMACS International Symposium on Iterative Methods in Scientific Computing, Applied Numerical Mathematics vol. 75, pp. 61–76 (2014)

  3. Al-Khaleel, M., Gander, M.J., Ruehli, A.E.: Optimization of transmission conditions in waveform relaxation techniques for RC circuits. SIAM J. Numer. Anal. 52, 1076–1101 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bortot, L., Auchmann, B., Garcia, I.C., Navarro, A.M.F., Maciejewski, M., Mentink, M., Prioli, M., Ravaioli, E., Schöps, S., Verweij, A.P.: STEAM: a hierarchical cosimulation framework for superconducting accelerator magnet circuits. IEEE Trans. Appl. Supercond. 28(3), 1–6 (2018). https://doi.org/10.1109/TASC.2017.2787665

    Article  Google Scholar 

  5. Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics. Springer, New York (2007)

    Google Scholar 

  6. Burrage, K.: Parallel and Sequential Methods for Ordinary Differential Equations. Clarendon Press, Oxford (1995)

    MATH  Google Scholar 

  7. Burrage, K., Jackiewicz, Z., Nørsett, S., Renaut, R.A.: Preconditioning waveform relaxation iterations for differential systems. BIT Numer. Math. 36, 54–76 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burrage, K., Hertono, G., Jackiewicz, Z., Welfert, B.D.: Acceleration of convergence of static and dynamic iterations. BIT Numer. Math. 41, 645–655 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Burrage, K., Jackiewicz, Z., Welfert, B.: Spectral approximation of time windows in the solution of dissipative linear differential equations. J. Numer. Anal. Ind. Appl. Math. 4(1–2), 41–64 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Christlieb, A.J., Macdonald, C.B., Ong, B.W.: Parallel high-order integrators. SIAM J Sci. Comput. 32, 818–835 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. de Dieu Nshimiyimana, J., Plumier, F., Dular, P., Geuzaine, C., Gyselinck, J.: Co-simulation of finite element and circuit solvers using optimized waveform relaxation. In: IEEE International Energy Conference (ENERGYCON), pp. 1–6(2016). https://doi.org/10.1109/ENERGYCON.2016.7513958

  12. Dolean, V., Jolivet, P., Nataf, F.: An introduction to domain decomposition methods. In: Algorithms, Theory, and Parallel Implementation . Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2015)

  13. Gander, M.J., Halpern, L.: Méthodes de relaxation d’ondes (SWR) pour l’èquation de la chaleur en dimension 1. C. R. Math. 336(6), 519–524 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gander, M.J., Kwok, F.: Numerical Analysis of Partial Differential Equations Using Maple and MATLAB. Society for Industrial and Applied Mathematics, Philadelphia (2018). https://doi.org/10.1137/1.9781611975314

    Book  MATH  Google Scholar 

  15. Gander, M.J., Ruehli, A.E.: Solution of large transmission line type circuits using a new optimized waveform relaxation partitioning. In: IEEE Symposium on Electromagnetic Compatibility. Symposium Record (Cat. No.03CH37446), vol. 2, pp. 636–641 (2003)

  16. Gander, M.J., Ruehli, A.E.: Optimized waveform relaxation methods for RC type circuits. IEEE Trans. Circuits Syst. I Regul. Pap. 51(4), 755–768 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gander, M.J., Stuart, A.: Space–time continuous analysis of waveform relaxation for the heat equation. SIAM J. Sci. Comput. 19(6), 2014–2031 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gander, M.J., Zhang, H.: A class of iterative solvers for the helmholtz equation: factorizations, sweeping preconditioners, source transfer, single layer potentials, polarized traces, and optimized Schwarz methods. SIAM Rev. 61(1), 3–76 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gander, M.J., Halpern, L., Nataf, F.: Optimal Schwarz waveform relaxation for the one dimensional wave equation. SIAM J. Numer. Anal. 41(5), 1643–1681 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gander, M.J., Al-Khaleel, M., Ruehli, A.E.: Waveform relaxation technique for longitudinal partitioning of transmission lines. In: IEEE Electrical Performance of Electronic Packaging, pp. 207–210 (2006)

  21. Gander, M.J., Al-Khaleel, M., Ruchli, A.E.: Optimized waveform relaxation methods for longitudinal partitioning of transmission lines. IEEE Trans. Circuits Syst. I Regul. Pap. 56(8), 1732–1743 (2009)

    Article  MathSciNet  Google Scholar 

  22. Gander, M.J., Jiang, Y.L., Li, R.J.: Parareal Schwarz waveform relaxation methods. In: Bank, R., Holst, M., Widlund, O., Xu, J. (eds.) Domain Decomposition Methods in Science and Engineering, XX, pp. 451–458. Springer, Berlin (2013)

    Chapter  Google Scholar 

  23. Gander, M.J., Kumbhar, P.M., Ruehli, A.E.: Analysis of overlap in waveform relaxation methods for RC circuits. In: Bjørstad, P.E., Brenner, S.C., Halpern, L., Kim, H.H., Kornhuber, R., Rahman, T., Widlund, O.B. (eds.) Domain Decomposition Methods in Science and Engineering XXIV, pp. 281–289. Springer International Publishing, Cham (2018)

  24. Gander, M.J., Jiang, Y.L., Song, B.: A superlinear convergence estimate for the parareal Schwarz waveform relaxation algorithm. SIAM J. Sci. Comput. 41(2), A1148–A1169 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gander, M.J., Kumbhar, P.M., Ruehli, A.E.: Asymptotic analysis for different partitionings of RLC transmission lines. In: Accepted for Domain Decomposition Methods in Science and Engineering XXV, LNCSE, Springer, Berlin (2019)

  26. Garcia, I.C., Schöps, S., Maciejewski, M., Bortot, L., Prioli, M., Auchmann, B., Verweij, A.: Optimized field/circuit coupling for the simulation of quenches in superconducting magnets. IEEE J. Multiscale Multiphys. Comput. Tech. 2, 97–104 (2017). https://doi.org/10.1109/JMMCT.2017.2710128

    Article  Google Scholar 

  27. Gaspar, F.J., Rodrigo, C.: Multigrid waveform relaxation for the time-fractional heat equation. SIAM J. Sci. Comput. 39(4), A1201–A1224 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Griffiths, D.F.: Finite Element Methods for Time Dependent Problems, pp. 327–357. Springer, Dordrecht (1986)

    Google Scholar 

  29. Ho, C.W., Ruehli, A., Brennan, P.: The modified nodal approach to network analysis. IEEE Trans. Circuits Syst. 22(6), 504–509 (1975)

    Article  Google Scholar 

  30. Janssen, J., Vandewalle, S.: Multigrid waveform relaxation of spatial finite element meshes: the continuous-time case. SIAM J. Numer. Anal. 33(2), 456–474 (1996a)

    Article  MathSciNet  MATH  Google Scholar 

  31. Janssen, J., Vandewalle, S.: Multigrid waveform relaxation on spatial finite element meshes: the discrete-time case. SIAM J. Sci. Comput. 17(1), 133–155 (1996b)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jeltsch, R., Pohl, B.: Waveform relaxation with overlapping splittings. SIAM J. Sci. Comput. 16(1), 40–49 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kumbhar, P.M.: Asymptotic analysis of optimized waveform relaxation methods for RC circuits and RLCG transmission lines. PhD thesis, iD: unige:136729 (2020)

  34. Kwok, F., Ong, B.: Schwarz waveform relaxation with adaptive pipelining. SIAM J. Sci. Comput. 41(1), A339–A364 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lelarasmee, E., Ruehli, A.E., Sangiovanni-Vincentelli, A.L.: The waveform relaxation method for time-domain analysis of large scale integrated circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 1(3), 131–145 (1982)

    Article  Google Scholar 

  36. Menkad, T., Dounavis, A.: Resistive coupling-based waveform relaxation algorithm for analysis of interconnect circuits. IEEE Trans. Circuits Syst. I Regul. Pap. 64(7), 1877–1890 (2017)

    Article  Google Scholar 

  37. Najm, F.N.: Circuit Simulation. Wiley-IEEE Press, Amsterdam (2010)

    Book  Google Scholar 

  38. Ong, B.W., Haynes, R.D., Ladd, K.: Algorithm 965: Ridc methods: a family of parallel time integrators. ACM Trans. Math. Softw. 43(1), 8:1–8:13 (2016a). https://doi.org/10.1145/2964377

    Article  MathSciNet  MATH  Google Scholar 

  39. Ong, B.W., High, S., Kwok, F.: Pipeline Schwarz waveform relaxation. In: Dickopf, T., Gander, M.J., Halpern, L., Krause, R., Pavarino, L.F. (eds.) Domain Decomposition Methods in Science and Engineering XXII, pp. 363–370. Springer, Cham (2016b)

    Chapter  Google Scholar 

  40. Ruehli, A.E., Zukowski, C.A.: Convergence of waveform relaxation for RC circuits. In: Coughran, W.M., Cole, J., Llyod, P., White, J.K. (eds.) Semiconductors, pp. 141–146. Springer, New York, New York (1994)

    Chapter  Google Scholar 

  41. Sand, J., Burrage, K.: A Jacobi waveform relaxation method for ODEs. SIAM J. Sci. Comput. 20(2), 534–552 (1998). https://doi.org/10.1137/S1064827596306562

    Article  MathSciNet  MATH  Google Scholar 

  42. Vandewalle, S.: Parallel Multigrid Waveform Relaxation for Parabolic Problems. Teubner-Verlag, Sonnewalde (1993)

    Book  MATH  Google Scholar 

  43. Vandewalle, S., Piessens, R.: Multigrid Waveform Relaxation for Solving Parabolic Partial Differential Equations, pp. 377–388. Birkhäuser Basel, Basel (1991)

    MATH  Google Scholar 

  44. White, J.K., Sangiovanni-Vincentelli, A.L.: Relaxation Techniques for the Simulation of VLSI Circuits. Kluwer, Boston (1987)

    Google Scholar 

  45. Wu, S.-L., Al-Khaleel, M.D.: Optimized waveform relaxation methods for RC circuits: discrete case. ESAIM: M2AN 51(1), 209–223 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Funding was provided by Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Grant No. 200020_168999 and 200020_178752).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratik M. Kumbhar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gander, M.J., Kumbhar, P.M. & Ruehli, A.E. Asymptotic Analysis for Overlap in Waveform Relaxation Methods for RC Type Circuits. J Sci Comput 84, 24 (2020). https://doi.org/10.1007/s10915-020-01270-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01270-5

Keywords

Navigation