Skip to main content

Advertisement

Log in

The Potent PDE10A Inhibitor MP-10 (PF-2545920) Suppresses Microglial Activation in LPS-Induced Neuroinflammation and MPTP-Induced Parkinson’s Disease Mouse Models

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

MP-10 (PF-2545920) is a selective inhibitor of phosphodiesterase 10A (PDE10A), an enzyme highly enriched in the striatum, nucleus accumbens, olfactory tubercle, and substantia nigra. The therapeutic effect of MP-10 has been reported in psychiatric and neurodegenerative disorders such as schizophrenia, depression, and Huntington’s disease. However, the effect of MP-10 in Parkinson’s disease (PD) has not been reported to date. In this study, we examined the effect of MP-10 in neuroinflammation and PD mouse models. MP-10 inhibited nitric oxide, tumor necrosis factor alpha, and interleukin (IL)-6 production, while it promoted IL-10 production in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Subsequent western blot and reverse transcription polymerase chain reaction analyses showed that MP-10 reduced the mRNA and protein levels of inducible nitric oxide synthase, cyclooxygenase-2, proinflammatory cytokines, and matrix metalloproteinase-3, −8, and − 9 in LPS-stimulated BV2 cells. Further mechanistic studies revealed that MP-10 exerts anti-inflammatory effects by inhibiting the phosphorylation of c-Jun N-terminal kinase and Akt, reducing the activity of nuclear factor-kappa B/activator protein-1, and upregulating the nuclear factor erythroid 2-related factor 2/antioxidant response element and protein kinase A/cAMP response element-binding protein signaling pathways. The anti-inflammatory effect of MP-10 was confirmed in vivo. Specifically, MP-10 inhibited microglial activation and proinflammatory gene expression in the brains of LPS-injected mice. Moreover, MP-10 rescued behavioral deficits and recovered dopaminergic neuronal cell death in the brains of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced PD mice. MP-10 also reduced microglial activation in this PD mouse model. These data collectively suggest that MP-10 may have therapeutic potential in PD and other neuroinflammatory disorders.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  CAS  PubMed  Google Scholar 

  • Bertolino A, Crippa D, Dio SD, Fichte K, Musmeci G, Porro V, Sastre Y, Hermande M, Schratzer M (1988) Rolipram versus imipramine in inpatients with major, “minor” or atypical depressive disorder: a double blinded-dummy study aimed at testing a novel therapeutic approach. Int Clin Psychopharmacol 3:245–253

    Article  CAS  PubMed  Google Scholar 

  • Bocchini V, Mazzolla R, Barluzzi R, Blasi E, Sick P, Kettenmann H (1992) An immortalized cell line expresses properties of activated microglial cells. J Neurosci Res 31:616–621

    Article  CAS  PubMed  Google Scholar 

  • Cherry JD, Olschowka JA, O’Banion MK (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation 11:98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cho SJ, Kang KA, Piao MJ, Ryu YS, Fernando PDSM, Zhen AX, Hyun YJ, Ahn MJ, Kang HK, Hyun JW (2019) 7,8-dihydroxyflavone protects high glucose-damaged neuronal cells against oxidative stress. Biomol Ther 27:85–91

    Article  CAS  Google Scholar 

  • Collins LM, Toulouse A, Connor TJ, Nolan YM (2012) Contributions of central and systemic inflammation to the pathophysiology of Parkinson’s disease. Neuropharmacology 62:2154–2168

    Article  CAS  PubMed  Google Scholar 

  • Cristina S, Zangaglia R, Mancini F, Martignoni E, Nappi G, Pacchetti C (2003) High-dose ropinirole in advanced Parkinson’s disease with severe dyskinesias. Clin Neuropharmacol 26:146–150

    Article  CAS  PubMed  Google Scholar 

  • Cronk JC, Kipnis J (2013) Microglia- the brain’s busy bees. F1000 Prime Rep 5:53

    Article  Google Scholar 

  • Garden GA, Moller T (2006) Microglia biology in health and disease. J NeuroImmune Pharmacol 1:127–137

    Article  PubMed  Google Scholar 

  • Ghosh M, Xu Y, Pearse DD (2016) Cyclic AMP is a key regulator of M1 and M2a phenotype conversion of microglia in the presence of Th2 cytokines. J Neuroinflammation 13:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giorgi M, D’Angelo V, Esposito Z, Nuccetelli V, Sorge R, Martorana A, Stefani A, Bernardi G, Sancesario G (2008) Lowered cAMP and cGMP signaling in the brain during levodopa-induced dyskinesia in hemiparkinsonian rats: new aspects in the pathogenetic mechanisms. Eur J Neurosci 28:941–950

    Article  CAS  PubMed  Google Scholar 

  • Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grauer SM, Pulito VL, Navarra RL, Kelly MP, Kelley C, Graf R, Langen B, Logue S, Brennan J, Jiang L, Charych E, Egerland U, Liu F, Marquis KL, Malamas M, Hage T, Comery TA, Brandon NJ (2009) Phosphodiesterase 10A inhibitor activity in preclinical models of the positive, cognitive, and negative symptoms of schizophrenia. J Pharmacol Exp Ther 331(2):574–590

    Article  CAS  PubMed  Google Scholar 

  • Heckman PRA, van Duinen MA, Bollen EPP, Nishi A, Wennogle LP, Blokland A, Prickaerts J (2016) Phosphodiesterase inhibition and regulation of dopaminergic frontal and striatal functioning: clinical implications. Int J Neuropsychopharmacol 19(10):1–16

    Article  CAS  Google Scholar 

  • Jankowska A, Swierczek A, Wyska E, Gawalska A, Bucki A, Pawlowski M, Chlon-Rzepa G (2019) Advances in discovery of PDE10A inhibitors for CNS-related disorders. Part 1: overview of the chemical and biological research. Curr Drug Targets 20:122–143

    Article  CAS  PubMed  Google Scholar 

  • Jung JS, Shin JA, Park EM et al (2010) Anti-inflammatory mechanism of ginsenoside Rh1 in lipopolysaccharide-stimulated microglia: critical role of the protein kinase A pathway and hemeoxygenase-1 expression. J Neurochem 115:1668–1680

    Article  CAS  PubMed  Google Scholar 

  • Knott EP, Assi M, Rao SN, Ghosh M, Pearse DD (2017) Phosphodiesterase inhibitors as therapeutic approach to neuroprotection and repair. Int J Mol Sci 18:696

    Article  PubMed Central  CAS  Google Scholar 

  • Lee B, Cao R, Choi YS, Cho HY, Rhee AD, Hah CK, Hoy KR, Obrietan K (2009) The CREB/CRE transcriptional pathway: protection against oxidative stress-mediated neuronal cell death. J Neurochem 108:1251–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee EJ, Woo MS, Moon PG, Baek MC, Choi IY, Kim WK, Junn E, Kim HS (2010) α-Synuclein activates microglia by inducing the expressions of matrix metalloproteases and the subsequent activation of protease-activated receptor-1. J Immunol 185:615–623

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Bae EJ, Lee SJ (2014) Extracellular α-synuclein – a novel and crucial factor in Lewy body diseases. Nat Rev Neurol 10:92–98

    Article  CAS  PubMed  Google Scholar 

  • Lee EJ, Ko HM, Jeong YH, Park EM, Kim HS (2015) β-Lapachone suppresses neuroinflammation by modulating the expression of cytokines and matrix metalloproteinases in activated microglia. J Neuroinflammation 12:133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee YY, Park JS, Leem YH, Park JE, Kim DY, Choi YH, Park EM, Kang JL, Kim HS (2019) The phosphodiesterase 10 inhibitor papaverine exerts anti-inflammatory and neuroprotective effects via the PKA signaling pathway in neuroinflammation and Parkinson’s disease mouse models. J Neuroinflammation 16:246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin SF, Labaree D, Chen MK, Holden D, Gallezot JD, Kapinos M, Teng JK, Najafzadeh S, Plisson C, Rabiner EA, Gunn RN, Carson RE, Huang Y (2015) Further evaluation of [11C]MP-10 as a radiotracer for phosphodiesterase 10A (PDE10A): PET imaging study in rhesus monkeys and brain tissue metabolite analysis. Synapse 69(2):86–95

    Article  CAS  PubMed  Google Scholar 

  • Liu CY, Wang X, Liu C, Zhang HL (2019) Pharmacological targeting of microglial activation: new therapeutic approach. Front Cell Neurosci 13:514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsukawa N, Maki M, Yasuhara T, Hara K, Yu G, Xu L, Kim KM, Morgan JC, Sethi KD, Borlongan CV (2007) Overexpression of D2/D3 receptors increases efficacy of ropinirole in chronically 6-OHDA-lesioned Parkinsonian rats. Brain Res 1160:113–123

    Article  CAS  PubMed  Google Scholar 

  • Niccolini F, Foltynie T, Reis Marques T, Muhlert N, Tziortzi AC, Searle GE, Natesan S, Kapur S, Rabiner EA, Gunn RN, Piccini P, Politis M (2015) Loss of phosphodiesterase 10A expression is associated with progression and severity in Parkinson’s disease. Brain 138:3003–3015

    Article  PubMed  Google Scholar 

  • Nikiforuk A, Potasiewicz A, Rafa D, Drescher K, Bespalov A, Popik P (2016) The effects of PDE10 inhibition on attentional set-shifting do not depend on the activation of dopamine D1 receptors. Behav Pharmacol 27(4):331–338

    Article  CAS  PubMed  Google Scholar 

  • Park JS, Leem YH, Park JE, Kim DY, Kim HS (2019) Neuroprotective effect of β-lapachone in MPTP-induced Parkinson’s disease mouse model: involvement of astroglial p-AMPK/Nrf2/HO-1 signaling pathways. Biomol Ther 27:178–184

    Article  CAS  Google Scholar 

  • Pearse DD, Hughes ZA (2016) PDE4B as a microglia target to reduce neuroinflammation. Glia 64:1698–1709

    Article  PubMed  Google Scholar 

  • Peixoto CA, Nunes AK, Garcia-Osta A (2015) Phosphdiesterase-5 inhibitors: action on the signaling pathways of neuroinflammation and neurodegeneration and cognition. Mediat Inflamm 2015:940207

    Article  CAS  Google Scholar 

  • Pifarre P, Prado J, Baltrons MA, Giralt M, Gabarro P, Feinstein DL, Hidalgo J, Garcia A (2011) Sidenafil (Viagra) ameliorates clinical symptoms and neuropathology in a mouse model of multiple sclerosis. Acta Neuropathol 121:499–508

    Article  CAS  PubMed  Google Scholar 

  • Plisson C, Salinas C, Weinzimmer D, Labaree D, Lin SF, Ding YS, Jakobsen S, Smith PW, Eiji K, Carson RE, Gunn RN, Rabiner EA (2011) Radiosynthesis and in vivo evaluation of [11C]MP-10 as a positron emission tomography radioligand for phosphodiesterase 10A. Nucl Med Biol 38(6):875–884

    Article  CAS  PubMed  Google Scholar 

  • Rai SN, Yadav SK, Singh D, Singh SP (2016) Ursolic acid attenuates oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in MPTP-induced Parkinsonian mouse model. J Chem Neuroanat 71:41–49

    Article  CAS  PubMed  Google Scholar 

  • Richter W, Menniti FS, Zhang HT, Conti M (2013) PDE4 as a target for cognition enhancement. Expert Opin Ther Targets 17:1011–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulke JP, McAllister LA, Geoghegan KF, Parikh V, Chappie TA, Verhoest PR, Schmidt CJ, Johnson DS, Brandon NJ (2014) Chemoproteomics demonstrates target engagement and exquisite selectivity of the clinical phosphodiesterase 10A inhibitor MP-10 in its native environment. ACS Chem Biol 9:2823–2832

    Article  CAS  PubMed  Google Scholar 

  • Song GH, Suk K (2017) Pharmacological modulation of functional phenotypes of microglia in neurodegenerative diseases. Front Aging Neurosci 9:139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Subramaniam SR, Federoff HJ (2017) Targeting microglial activation states as a therapeutic avenue in Parkinson’s disease. Front Aging Neurosci 9:176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sveinbjornsdottir S (2016) The clinical symptoms of Parkinson’s disease. J Neurochem 1:318–324

    Article  CAS  Google Scholar 

  • Wilson LS, Brandon NJ (2015) Emerging biology of PDE10A. Curr Pharm Des 21:378–388

    Article  CAS  PubMed  Google Scholar 

  • Wilson JM, Ogden AML, Loomis S, Gilmour G, Baucum AJ 2nd, Belecky-Adams TL, Merchant KM (2015) Phosphodiesterase 10A inhibitor, MP-10 (PF-2545920), produces greater induction of c-Fos in dopamine D2 neurons than in D1 neurons in the neostriatum. Neuropharmacology 99:379–386

    Article  CAS  PubMed  Google Scholar 

  • Zagorska A, Partyka A, Bucki A, Gawalska A, Czopek A, Pawlowski M (2018) Phosphodiesterase 10 inhibitors – novel perspectives for psychiatric and neurodegenerative drug discovery. Curr Med Chem 25:1–27

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2018R1A2B6003074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Sun Kim.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, DY., Park, JS., Leem, YH. et al. The Potent PDE10A Inhibitor MP-10 (PF-2545920) Suppresses Microglial Activation in LPS-Induced Neuroinflammation and MPTP-Induced Parkinson’s Disease Mouse Models. J Neuroimmune Pharmacol 16, 470–482 (2021). https://doi.org/10.1007/s11481-020-09943-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-020-09943-6

Keywords

Navigation