Skip to main content
Log in

Reactions of [Os3(CO)10(μ-H)2] and [Os3(CO)83-Ph2PCH2P(Ph)C6H4}(μ-H)] with pymS‒SnPh3 (pymS = pyrimidine-2-thiolate): Synthesis and Structure of Triosmium Clusters Containing pymS Ligand

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Reactivity of pymS‒SnPh3 (pymS = pyrimidine-2-thiolate) towards two unsaturated triosmium clusters [Os3(CO)10(μ-H)2] and [Os3(CO)83-Ph2PCH2P(Ph)C6H4}(μ-H)] are investigated. Reaction of pymS‒SnPh3 with [Os3(CO)10(μ-H)2] affords [Os3(CO)10(µ-pymS)(µ-H)] (1) and [Os3(CO)93-pymS)(µ-H)] (2), while with [Os3(CO)83-Ph2PCH2P(Ph)C6H4}(μ-H)] leads to the isolation of only [Os3(CO)8(μ-pymS)(μ-H)(μ-dppm)] (3). In both reactions, the products are formed via incorporation of the thiolate part (pymS) of pymS‒SnPh3 into the parent clusters through Sn‒S bond cleavage. Clusters 13 have been characterized by a combination of analytical and spectroscopic data together with single crystal X-ray diffraction analysis.

Graphic Abstract

Reactions of pymS‒SnPh3 with two unsaturated triosmium clusters have been investigated which resulted in the isolation and characterization of three triosmium clusters containing a pymS ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Scheme 4
Fig. 3

Similar content being viewed by others

References

  1. Choi N, Conole G, Kessler M, King JD, Mays MJ, McPartlin M, Pateman GE, Solan GA (1999) J Chem Soc Dalton Trans 22:3941–3948

    Google Scholar 

  2. Cockerton B, Deeming AJ, Karim M, Hardcastle KI (1991) J Chem Soc Dalton Trans 431–437

  3. Deeming AJ, Karim M, Powell NI, Hardcastle KI (1990) Polyhedron 9:623–626

    CAS  Google Scholar 

  4. Deeming AJ, Hardcastle KI, Meah MN, Bates PA, Dawes HM, Hursthouse MB (1988) J Chem Soc Dalton Trans 1:227–233

    Google Scholar 

  5. Deeming AJ, Karim M, Powell NI (1990) J Chem Soc Dalton Trans 2321–2324.

  6. Kole GK, Vivekananda KV, Kumar M, Ganguly R, Deya S, Jain VK (2015) CrystEngComm 17:4367–4376

    CAS  Google Scholar 

  7. Tyagi A, Kole GK, Shah AY, Wadawale A, Srivastava AP, Kumar M, Kedarnath G, Jain VK (2019) J Organomet Chem 887:24–31

    CAS  Google Scholar 

  8. Lugan N, Bonnet JJ, Ibers JA (1985) J Am Chem Soc 107:4484–4491

    CAS  Google Scholar 

  9. Johnson BFG, Lewis J, Pippard DA (1981) J Chem Soc Dalton Trans 2:407–412

    Google Scholar 

  10. Rosenfield SG, Swedberg SA, Arora SK, Mascharak PK (1986) Inorg Chem 25:2109–2114

    CAS  Google Scholar 

  11. Rose DJ, Chang YD, Chen Q, Zubieta J (1994) Inorg Chem 23:5167–5168

    Google Scholar 

  12. Kitagawa S, Munakata M, Shimono H, Matsuyama S, Masuda S (1990) J Chem Soc Dalton Trans 7:2105–2109

    Google Scholar 

  13. Deeming AJ, Karim M, Bates PA, Hursthouse MB (1988) Polyhedron 7:1401–1403

    CAS  Google Scholar 

  14. Katiyar D, Tiwari VK, Tripathi RP, Srivastava A, Chaturvedi V, Srivastava R, Srivastava BS (2003) Bioorg Med Chem 11:4369–4375

    CAS  PubMed  Google Scholar 

  15. Kienitz CO, Thöne C, Jones P (1996) Inorg Chem 35:3990–3997

    CAS  PubMed  Google Scholar 

  16. Castro R, Durán ML, Garcia-Vázquez JA, Romero J, Sousa A, Castiñeiras A, Hiller W, Strähle J (1990) J Chem Soc Dalton Trans 2:531–534

    Google Scholar 

  17. Rosenfield SG, Berends HP, Gelmini L, Stephan DW, Mascharak PK (1987) Inorg Chem 26:2792–2797

    CAS  Google Scholar 

  18. Lee J, Emge TJ, Brennan JG (1997) Inorg Chem 36:5064–5068

    CAS  Google Scholar 

  19. Cheng Y, Emge TJ, Brennan JG (1996) Inorg Chem 35:342–346

    CAS  PubMed  Google Scholar 

  20. Berardini M, Brennan J (1995) Inorg Chem 34:6179–6185

    CAS  Google Scholar 

  21. Rose DJ, Chang YD, Chen Q, Kettler PB, Zubieta J (1995) Inorg Chem 34:3973–3979

    CAS  Google Scholar 

  22. Kabir SE, Hogarth G (2009) Coord Chem Rev 253:1285–1315

    CAS  Google Scholar 

  23. Kabir SE, Ahmed F, Ghosh S, Mamun RA, Haworth DT, Lindeman SV, Siddiquee TA, Bennett DW (2009) J Chem Crystallogr 39:595–602

    Google Scholar 

  24. Rahman MS, Sarker JC, Ghosh S, Kabir SE (2012) Aust J Chem 65:796–801

    CAS  Google Scholar 

  25. Hoque A, Islam S, Karim M, Ghosh S, Hogarth G (2015) Inorg Chem Commun 54:69–72

    CAS  Google Scholar 

  26. Chowdhury MAH, Rajbangshi S, Karim M, Ghosh S, Kabir SE, Siddiquee TA, Nesterov VN, Richmond MG (2015) Inorg Chim Acta 434:97–103

    CAS  Google Scholar 

  27. Ahmad MF, Sarker JC, Azam KA, Kabir SE, Ghosh S, Hogarth G, Siddiquee TA, Richmond MG (2013) J Organomet Chem 728:30–37

    CAS  Google Scholar 

  28. Haque MR, Ghosh S, Hogarth G, Richmond MG, Kabir SE (2015) Inorg Chim Acta 434:150–157

    CAS  Google Scholar 

  29. Moni MR, Ghosh S, Mobin SM, Tocher DA, Hogarth G, Richmond MG, Kabir SE (2018) J Organomet Chem 871:167–177

    CAS  Google Scholar 

  30. Abedin SMT, Haque MR, Ghosh S, Tocher DA, Richmond MG, Kabir SE (2019) Polyhedron 164:55–63

    Google Scholar 

  31. Ghosh S, Kabir SE, Pervin S, Hossain GMG, Haworth DT, Lindeman SV, Siddiquee TA, Bennett DW, Roesky HW (2009) Z Anorg Allg Chem 635:76–87

    CAS  Google Scholar 

  32. Ghosh S, Kabir SE, Pervin S, Raha AK, Hossain GMG, Haworth DT, Lindeman SV, Bennett DW, Siddiquee TA, Salassa L, Roesky HW (2009) Dalton Trans 18:3510–3518

    Google Scholar 

  33. Kabir SE, Alam J, Ghosh S, Kundu K, Hogarth G, Tocher DA, Hossain GMG, Roesky HW (2009) Dalton Trans 23:4458–4467

    Google Scholar 

  34. Ghosh S, Khanam KN, Hossain MK, Hossain GMG, Haworth DT, Lindeman SV, Hogarth G, Kabir SE (2010) J Organomet Chem 695:1146–1154

    CAS  Google Scholar 

  35. Ghosh S, Khanam KN, Hossain GMG, Haworth DT, Lindeman SV, Hogarth G, Kabir SE (2010) New J Chem 34:1875–1884

    CAS  Google Scholar 

  36. Ghosh S, Camellia FK, Fatema K, Hossain MI, Al-Mamum MR, Hossain GMG, Hogarth G, Kabir SE (2011) J Organomet Chem 696:2935–2942

    CAS  Google Scholar 

  37. Ghosh S, Mia MSA, Begum E, Hossain GMG, Kabir SE (2012) Inorg Chim Acta 384:76–82

    CAS  Google Scholar 

  38. Moni MR, Mia MJ, Ghosh S, Tocher DA, Mobin SM, Siddiquee TA, Kabir SE (2018) Polyhedron 146:154–160

    CAS  Google Scholar 

  39. Abedin SMT, Moni MR, Ghosh S, Tocher DA, Hossain GMG, Mobin SM, Kabir SE (2018) Polyhedron 152:164–171

    CAS  Google Scholar 

  40. Ghosh S, Kabir SE, Khatun M, Haworth DT, Lindeman SV, Siddiquee TA, Bennett DW (2009) J Chem Crystallogr 39:632–637

    CAS  Google Scholar 

  41. Khaleque MA, Azam KA, Karim MM, Ghosh S, Hogarth G, Kabir SE (2012) Aus J Chem 65:773–778

    Google Scholar 

  42. Holt MS, Wilson WL, Nelson JH (1989) Chem Rev 89:11–49

    CAS  Google Scholar 

  43. Coupé JN, Jordão E, Fraga MA, Mendes MJ (2000) Appl Catal A 199:45–51

    Google Scholar 

  44. Santos SM, Silva AM, Jordao E, Fraga MA (2004) Catal Commun 5:377–381

    CAS  Google Scholar 

  45. Toba M, Tanaka S, Niwa S, Mizukami F, Koppany Z, Guczi L, Cheah K-Y, Tang T-S (1999) Appl Catal A 189:243–250

    CAS  Google Scholar 

  46. Lafaye G, Micheaud-Especel C, Montassier C, Marecot P (2002) Appl Catal A 230:19–30

    CAS  Google Scholar 

  47. Didillon B, Candy JP, Lepepetier F, Ferretti OA, Basset JM (1993) Stud Surf Sci Catal 78:147–154

    CAS  Google Scholar 

  48. Lafaye G, Mihut C, Especel C, Marecot P, Amiridis MD (2004) Langmuir 20:10612–10616

    CAS  PubMed  Google Scholar 

  49. Al-Mamun MR, Ghosh S, Kabir SE, Sarker JC, Hogarth G, Nicholson BK (2015) J Coord Chem 68:1903–1912

    Google Scholar 

  50. Ghosh S, Pervin R, Raha AK, Kabir SE, Nicholson BK (2009) Inorg Chim Acta 362:4226–4230

    CAS  Google Scholar 

  51. Raha AK, Ghosh S, Hossain I, Kabir SE, Nicholson BK, Hogarth G, Salassa L (2011) J Organomet Chem 696:2153–2160

    CAS  Google Scholar 

  52. Sappa E, Valle M (1977) Inorg Synth 26:365–369

    Google Scholar 

  53. Clucas JA, Foster DF, Harding MM, Smith AK (1984) J Chem Soc Chem Commun 14:949–950

    Google Scholar 

  54. Abel EW, Brady DB (1965) J Chem Soc 1192–1197

  55. Pollar RC (1970) The chemistry of organotin compounds. Logos Press, London

    Google Scholar 

  56. Bruker, SAINT (8.37A), Bruker AXS Inc., Madison (2015)

  57. Bruker, SADABS-2014/5, Bruker AXS Inc., Madison (2014)

  58. Sheldrick GM (2008) Acta Crystallogr Sect A 64:112–122

    CAS  Google Scholar 

  59. Sheldrick GM (2015) Acta Cryst C71:3–8

    Google Scholar 

  60. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Crystallogr 42:339–341

    CAS  Google Scholar 

  61. Ainscough EW, Brodie AM, Coll RK, Waters JM (1999) Aust J Chem 52:801–806

    CAS  Google Scholar 

  62. Au Y-K, Cheung K-K, Wong W-K (1995) J Chem Soc Dalton Trans 1047–1057

  63. Au Y-K, Cheung K-K, Wong W-K (1995) Inorg Chim Acta 228:267–275

    CAS  Google Scholar 

  64. Kabir SE, Malik KMA, Molla E, Mottalib MA (2000) J Organomet Chem 616:157–164

    CAS  Google Scholar 

  65. Raha AK, Ghosh S, Kabir SE, Nicholson BK, Tocher DA (2009) J Organomet Chem 694:752–756

    CAS  Google Scholar 

  66. Kabir SE, Raha AK, Hassan MR, Nicholson BK, Rosenberg E, Sharmin A, Salassa L (2008) Dalton Trans 32:4212–4219

    Google Scholar 

Download references

Acknowledgements

Financial support from the Ministry of Science and Technology, the Government of the People’s Republic of Bangladesh (SG and SEK) is acknowledged. We also thank the Wazed Miah Science Research Center, Jahangirnagar University, Bangladesh for providing some technical facilities required for this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shishir Ghosh or Shariff E. Kabir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joy, M.T.R., Ghosh, S. & Kabir, S.E. Reactions of [Os3(CO)10(μ-H)2] and [Os3(CO)83-Ph2PCH2P(Ph)C6H4}(μ-H)] with pymS‒SnPh3 (pymS = pyrimidine-2-thiolate): Synthesis and Structure of Triosmium Clusters Containing pymS Ligand. J Chem Crystallogr 51, 257–264 (2021). https://doi.org/10.1007/s10870-020-00849-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-020-00849-y

Keywords

Navigation