Skip to main content
Log in

New development of powder metallurgy in automotive industry

粉末冶金技术在汽车工业的新进展

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The driving force for using powder metallurgy (PM) mostly relies on its near net-shape ability and cost-performance ratio. The automotive application is a main market of PM industry, requiring parts with competitive mechanical or functional performance in a mass production scale. As the automobile technology transforms from traditional internal combustion engine vehicles to new energy vehicles, PM technology is undergoing significant changes in manufacturing and materials development. This review outlines the challenges and opportunities generated by the changes in the automotive technology for PM. Low-cost, high-performance and light-weight are critical aspects for future PM materials development. Therefore, the studies on PM lean-alloyed steel, aluminum alloys, and titanium alloy materials were reviewed. In addition, PM soft magnetic composite applied to new energy vehicles was discussed. Then new opportunities for advanced processing, such as metal injection molding (MIM) and additive manufacturing (AM), in automotive industry were stated. In general, the change in automotive industry raises sufficient development space for PM. While, emerging technologies require more preeminent PM materials. Iron-based parts are still the main PM products due to their mechanical performance and low cost. MIM will occupy the growing market of highly flexible and complex parts. AM opens a door for fast prototyping, great flexibility and customizing at low cost, driving weight and assembling reduction.

摘要

粉末冶金技术应用的驱动力主要来自于其近净形能力和高性价比. 汽车工业是粉末冶金技术的主要市场, 而汽车行业要求粉末冶金零部件在机械性能或功能上具有竞争力, 同时可满足大规模生产需求. 随着汽车技术从传统内燃机向新能源的转变, 粉末冶金技术在制造工艺和材料开发方面正经历着重大变化. 本文概述了汽车技术的变革给粉末冶金技术带来的挑战和机遇. 低成本、 高性能和轻量化是未来粉末冶金材料发展的关键因素. 因此, 本文就粉末冶金合金钢、 铝合金和钛合金材料的研究进行了综述. 此外, 还讨论了粉末冶金软磁复合材料在新能源汽车上的应用, 阐述了对先进加工技术如金属注射成形和增材制造产生的新机遇. 一般来说, 汽车技术的变革为粉末冶金提供了足够的发展空间, 新兴技术出现需要更加优异的粉末冶金材料. 铁基零件由于其机械性能好、 成本低, 将仍是粉末冶金的主要产品. 金属注射成形也将在灵活和复杂零件的市场得到巨大的发展机会. 增材制造提供了一种低成本、 灵活性、 个性化设计原型零件的快速制造途径, 并能减少零件的重量和组装步骤.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. RANDALL M. Powder metallurgy science [M]. Metal Powder Industries Federation, 1994: 1–18. DOI: https://doi.org/10.1016/0261-3069(85)90117-7.

  2. STANLEY A. Powder metal technologies and applications [M]. ASM International, 1998: 10–18. https://www.osti.gov/biblio/289959.

  3. TAN Zhao-qiang. Trends and opportunities for future growth [R]. Shanghai, China: Höganäs PM School, 2019.

    Google Scholar 

  4. ENGSTRÖM U. From raw material to new challenging applications [C]// Proceedings of EURO PM 2013. 2013(3): 301–306.

    Google Scholar 

  5. HUANG Bai-yun, WEI Wei-feng, LI Song-lin, ZHANG Li, LI Li-ya, LIU Feng, LI Rui-di. Advances in modern powder metallurgy materials and technologies [J]. The Chinese Journal of Nonferrous Metals, 2019, 29(9): 1917–1933. DOI: https://doi.org/10.19476/j.ysxb.1004.0609.2019.09.08. (in Chinese)

    Google Scholar 

  6. LMC Automotive. Global forecasting and market intelligence service [EB/OL]. [2019-11-25]. https://www.lmc-auto.com/.

  7. China Association of Automobile Manufactures. Automotive report China market [EB/OL]. [2019-11-25]. http://www.caam.org.cn/chn/4/cate_39/list_1.html.

  8. FLODIN A. Automotive teardown: Dismantling of three modern vehicles to discover current and potential uses of PM [J]. Powder Metallurgy Review, 2017, 6(2): 41–47.

    Google Scholar 

  9. MPIF Standard 35. Materials standard for PM structural parts [S].

  10. London Metal Exchange. Featured LME prices [EB/OL]. [2019-11-25]. https://www.lme.com/.

  11. ANGELOPOULOS V, HIRSCH M, WEIHMANN C. A parametric study on PM gear rolling densification simulations coupled with experimental results [C]// Proceeding of the World Conference on Powder Metallurgy. 2018: 16–20.

  12. KLOCKE F, LOPENHAUS C. Densifying PM gears by shot peening [C]// European Congress and Exhibition on Powder Metallurgy. European PM Conference Proceedings. The European Powder Metallurgy Association, 2016: 1–6.

  13. AKHTAR S, SAAD M, MISBAH M R, SATI M C. Recent advancements in powder metallurgy: A review [J]. Materials Today: Proceedings, 2018, 5(9): 18649–18655. DOI: https://doi.org/10.1016/j.matpr.2018.06.210

    Google Scholar 

  14. BERGMAN O, CHASOGLOU D, DAHLSTROM M. Mechanical performance of Cr-alloyed PM steel after different sintering and heat treatment operations [J]. Metal Powder Report, 2017, 73(1): 1–5. DOI: https://doi.org/10.1016/j.mprp.2017.01.003.

    Google Scholar 

  15. HRYHA E, GIERL C, NYBORG L, DANNINGER H, DUDROVA E. Surface composition of the steel powders pre-alloyed with manganese [J]. Applied Surface Science, 2010, 256(12): 3946–3961. DOI: https://doi.org/10.1016/j.apsusc.2010.01.055.

    Google Scholar 

  16. BERGMAN O. Influence of oxygen partial pressure in sintering atmosphere on properties of Cr-Mo prealloyed powder metallurgy steel [J]. Powder Metallurgy, 2007, 50(3): 243–249. DOI: https://doi.org/10.1179/174329007X205073.

    Google Scholar 

  17. TAN Zhao-qiang, GUO Yang, SU Peng-fei, ENGSTRÖM U. Influence of sintering conditions on dimensional precision for different PM steels [C]// World PM 2018. 2018: 336–341.

    Google Scholar 

  18. GERD K. NVH potential of PM gears for electrified drivetrains [J]. Ratio, 2018, 12: 5.

    Google Scholar 

  19. LARSSON C, ENGSTRÖM U. High performance sinter hardening materials for synchronizing hubs [J]. Powder Metallurgy, 2012, 55(2): 88–91. DOI: https://doi.org/10.1179/0032589912z.00000000053.

    Google Scholar 

  20. FROES F H. Advanced metal for aerospace and automotive use [J]. Materials Science and Engineering, 1994, 184(2): 119–133. DOI: https://doi.org/10.1016/0921-5093(94)91026-X.

    Google Scholar 

  21. QIAN Ma, SCHAFFER B. Sintering of aluminum and its alloys [M]. Woodhead Publishing, 2010: 316. DOI: https://doi.org/10.1533/9781845699949.3.291.

  22. WAYNE D. Versatile & cost-effective option for lightweighting [J]. Lightweigting World, 2017(JAN+FEB): 42–52. https://www.mppinnovation.com/wp-content/uploads/2017/02/Aluminum-Powder-Metallurgy-Article-Lightweighting-World.pdf.

  23. HUNT W H. New directions in aluminium based P/M materials for automotive applications [J]. The International Journal of Powder Metallurgy, 2000, 36(6): 51–60. DOI: https://doi.org/10.4271/2000-01-0333.

    Google Scholar 

  24. HEO J Y, GWON J H, PARK J K, LEE K A. Effects of heat treatment on the microstructures and high temperature mechanical properties of hypereutectic Al-14Si-Cu-Mg alloy manufactured by liquid phase sintering process [J]. Metals and Materials International, 2018, 24(3): 586–596. DOI: https://doi.org/10.1007/s12540-018-0068-9.

    Google Scholar 

  25. FROES F H, FRIEDRICH H, KIESE J, BERGOINT O. Titanium in the family automobile: The cost challenge [J]. Applying Materials Science and Engineering, 2004, 56(2): 40–44. DOI: https://doi.org/10.1007/s11837-004-0144-0.

    Google Scholar 

  26. FALLER K, FROES H K. The use of titanium in automobiles: Current technology [J]. Applying Materials Science and Engineering, 2001, 53(4): 27–28. DOI: https://doi.org/10.1007/s11837-001-0143-3.

    Google Scholar 

  27. KROLL W J. The production of ductile titanium [J]. Trans Electrochem Soc, 1940, 78(1): 35–47. DOI: https://doi.org/10.1149/1.3071290.

    Google Scholar 

  28. FANG Zhigang-zak, JAMES D P, SUN Pei, RAVI CHADRAN K S, ZHANG Ying, XIA Yang, CAO Fei, MARK K, MICHAEL F. Powder metallurgy of titanium—past, present, and future [J]. International Materials Reviews, 2017, 63(7): 407–459. DOI: https://doi.org/10.1080/09506608.2017.1366003.

    Google Scholar 

  29. ZHANG Ying, FANG Zhigang-zak, SUN Pei, ZHANG Tuo-yang, XIA Yang, ZHOU Cheng-shang, HUANG Zhe. Thermodynamic destabilization of Ti-O solid solution by H2 and deoxygenation of Ti using Mg [J]. Am Chem Soc, 2016, 138(22): 6916–6919. DOI: https://doi.org/10.1021/jacs.6b00845.

    Google Scholar 

  30. FANG Zhigang-zak, SUN Pei, WANG Hong-tao. Hydrogen sintering of titanium to produce high density fine grain titanium alloys [J]. Advanced Engineering Materials, 2012, 14(6): 383–387. DOI: https://doi.org/10.1002/adem.201100269.

    Google Scholar 

  31. LIU Yong, LIU Yang-bin, WANG Bin, TANG Hui-ping. Rare earth element: Is it a necessity for PM Ti alloys? [J]. Key Engineering Materials, 2012, 520: 41–48. DOI: https://doi.org/10.4028/www.scientific.net/KEM.520.41.

    Google Scholar 

  32. LIU Yan-bin, LIU Yong, WANG Bin, QIU Jing-wen, LIU Bin, TANG Hui-ping. Microstructures evolution and mechanical properties of a powder metallurgical titanium alloy with yttrium addition [J]. Materials and Manufacturing Processes, 2010, 25(8): 735–739. DOI: https://doi.org/10.1080/10426910903365778.

    Google Scholar 

  33. LIU Yong, CHEN Li-fang, TANG Hui-ping, LIU Chain-tsuan, LIU Bin, HUANG Bai-yun. Design of powder metallurgy titanium alloys and composites [J]. Materials Science and Engineering, 2006, 418(1, 2): 25–35. DOI: https://doi.org/10.1016/j.msea.2005.10.057.

    Google Scholar 

  34. XU Sheng-hang, ZHOU Cheng-shang, LIU Yong, LIU Bin, LI Kai-yang. Microstructure and mechanical properties of Ti-15Mo-xTiC composites fabricated by in-situ reactive sintering and hot swaging [J]. Journal of Alloys and Compounds, 2018, 738: 188–196. DOI: https://doi.org/10.1016/j.jallcom.2017.12.124.

    Google Scholar 

  35. LIU Bin, LIU Yong, HE Xiao-yu, TANG Hui-ping, CHEN Li-fang. Low cycle fatigue improvement of powder metallurgy titanium alloy through thermomechanical treatment [J]. Transactions of Nonferrous Metals Society of China, 2018, 18(2): 227–232. DOI: https://doi.org/10.1016/S1003-6326(08)60041-2.

    Google Scholar 

  36. ANDERSSON O, HOFECKER P. Advances in soft magnetic composites — Materials and applications [R]. Las Vegas: Höganäs AB, 2009.

    Google Scholar 

  37. HULTMAN L O, JACK A G. Soft magnetic composites-materials and applications [C]// IEEE International Electric Machines and Drives Conference. 2003, 1: 516–522.

    Google Scholar 

  38. GUMBLETON-WOOD D, ATKINSON G, WASHINGTON J, SJOBERG L. The influence of production methods on the magnetic performance of electrical steels and soft magnetic composites [C]// 2017 IEEE International Electric Machines and Drives Conference (IEMDC). IEEE, 2017: 1–7. DOI: https://doi.org/10.1109/IEMDC.2017.8002238.

  39. CHRISTIAN W, CARMEN M. Study on the economic and manufacturing advantages of powder metallurgically produced electric drive concepts [R]. Germany: Fraunhofer IFAM, 2016.

    Google Scholar 

  40. LARS S. Automotive electrification-opportunity for the PM industry [C]// APMA 2017. Höganäs AB, 2017.

  41. DONALD F. Handbook of metal injection molding [M]. Woodhead Publishing, 2018.

  42. DAVID W. PM titanium 2015: Developments in the metal injection moulding of titanium [J]. PIM International, 2015, 9(4): 75–82.

    Google Scholar 

  43. ANONYM. MIM 316L stainless seeks applications in BMW Hydrogen 7 car [J]. PIM International, 2007, 4(1): 5–5. DOI: https://doi.org/10.1007/s11837-999-0109-4.

    Google Scholar 

  44. HAUSNEROVA B. Powder injection moulding-An alternative processing method for automotive items [J]. New Trends and Developments in Automotive System Engineering, 2011: 129–145. DOI: https://doi.org/10.5772/13358.

  45. SCHLIEPER, G. Global PM leader GKN sinter metals optimistic as MIM gains acceptance with end-users [J]. PIM International, 2010, 1(4): 44–46.

    Google Scholar 

  46. WILLIAMS B. World PM 2018 congress: Global MIM markets show healthy growth [J]. PIM International, 2018, 4(12): 67–75.

    Google Scholar 

  47. MULSER M. Joining during shaping: two-component MIM provides new possibilities [J]. Metal Powder Report, 2016, 71(6): 445–449. DOI: https://doi.org/10.1016/j.mprp.2016.08.004.

    Google Scholar 

  48. SCHLIEPER G. The future of powder injection moulding: Innovations and opportunities at Arburg’s second PIM conference [J]. PIM International, 2018, 12(33): 71–81.

    Google Scholar 

  49. DUDA T, RAGHAVAN L V. 3D metal printing technology [J]. IFAC-Papers OnLine, 2016, 49(29): 103–110. DOI: https://doi.org/10.1016/j.ifacol.2016.11.111.

    Google Scholar 

  50. 3Dsystems. 3D rapid prototyping fast tracks GM fuel efficiency gains [EB/OL]. [2019-11-25]. http://www.3dsystems.com.

  51. JOHN N. Koenigsegg harnesses additive manufacturing for the one [EB/OL]. [2014-04-21]. https://www.digitalengineering247.com.

  52. JAMES G. GM explains its plans for 3D printing better car parts [EB/OL]. [2018-05-11]. https://www.thedrive.com.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng-shang Zhou  (周承商) or Yong Liu  (刘咏).

Additional information

Foundation item: Project(51625404) supported by the National Science Fund for Distinguished Young Scholars, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Zq., Zhang, Q., Guo, Xy. et al. New development of powder metallurgy in automotive industry. J. Cent. South Univ. 27, 1611–1623 (2020). https://doi.org/10.1007/s11771-020-4394-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4394-y

Key words

关键词

Navigation