Skip to main content
Log in

Influence of radial forging process on strain inhomogeneity of hollow gear shaft using finite element method and orthogonal design

借助数值模拟和正交设计探究径向锻工艺参数对空心轴应变不均匀性的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Due to the current trend towards lightweight design in automotive industry, hollow stepped gear shafts for automobile and its radial forging process are widely investigated. Utilizing coupled finite element thermo-mechanical model, radial forging process of a hollow stepped gear shaft for automobile was simulated. The optimal combination of three process parameters including initial temperature, rotation rate and radial reduction was also selected using orthogonal design method. To examine the strain inhomogeneity of the forging workpiece, the strain inhomogeneity factor was introduced. The results reveal that the maximum effective strain and the minimum effective strain appeared in the outermost and innermost zones of different cross sections for the hollow stepped gear shaft, respectively. Optimal forging parameters are determined as a combination of initial temperature of 780 °C, rotation rate of 21°/stroke and radial reduction of 3 mm.

摘要

鉴于当前汽车轻量化设计的趋势, 车用空心阶梯齿轮轴及其径向锻造工艺(RFP)得到了广泛研究. 借助热力耦合有限元模型, 模拟了空心阶梯齿轮轴的径向锻造工艺. 此外, 采用正交实验设计方法, 获得了温度、 旋转角度、 径向压下量等工艺参数对成形过程的影响, 并采用应变不均匀性因子评价锻造工件应变的不均程度. 研究表明, 横截面上的最大、 最小应变分别出现在空心阶梯齿轮轴内径和外径边缘. 该径向锻造最优工艺参数组合为温度为 780 °C, 旋转角度为21 °/冲程, 径向压下量为 3 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. FAN L X, WANG Z G, WANG H. 3D finite element modeling and analysis of radial forging processes [J]. Journal of Manufacturing Processes, 2014, 16(2): 329–334. DOI: https://doi.org/10.1016/j.jmapro.2014.01.005.

    Article  Google Scholar 

  2. SANJARI M, TAHERI A K, MOVAHEDI M R. An optimization method for radial forging process using ANN and Taguchi method [J]. International Journal of Advanced Manufacturing Technology, 2009, 40(7, 8): 776–784. DOI: https://doi.org/10.1007/s00170-008-1371-2.

    Article  Google Scholar 

  3. KHAYATZADEH S, POURSINA M, GOLESTANIAN H. A simulation of hollow and solid products in multi-pass hot radial forging using 3D-FEM method [J]. International Journal of Material Forming, 2008, 1(1): 371–374. DOI: https://doi.org/10.1007/s12289-008-0072-6.

    Article  Google Scholar 

  4. WANG K, YU T, SONG Y, LI H X, LIU M D, LUO R, ZHANG J Y, FANG F S, LIN X D. Effects of MnS inclusions on the banded microstructure in non-quenched and tempered steel [J]. Metallurgical and Materials Transactions B, 2019, 50(3): 1213–1224. DOI: https://doi.org/10.1007/s11663-019-01532-0.

    Article  Google Scholar 

  5. SUN Z C, HAN F X, WU H L, YANG H. Tri-modal microstructure evolution of Ta15 Ti-alloy under conventional forging combined with given subsequent heat treatment [J]. Journal of Materials Processing Technology, 2016, 229: 72–81. DOI: https://doi.org/10.1016/j.jmatprotec.2015.09.011.

    Article  Google Scholar 

  6. XIAO M L, LI F G, ZHAO W, YANG G L. Constitutive equation for elevated temperature flow behavior of TiNiNb alloy based on orthogonal analysis [J]. Materials & Design, 2012, 35: 184–193. DOI: https://doi.org/10.1016/j.matdes.2011.09.044.

    Article  Google Scholar 

  7. YU J Q, LI Y, TENG F, LIANG JC, LIN X F, LIANG C, CHEN G Y, SUN G P. Research on the cross section forming quality of three-dimensional multipoint stretch forming parts [J]. Advances in Materials Science and Engineering, 2018, 2018: 1–11. DOI: https://doi.org/10.1155/2018/4265617.

    Google Scholar 

  8. AMELI A, MOVAHHEDY M R. A parametric study on residual stresses and forging load in cold radial forging process [J]. International Journal of Advanced Manufacturing Technology, 2007, 33(1, 2): 7–17. DOI: https://doi.org/10.1007/s00170-006-0453-2.

    Article  Google Scholar 

  9. AZARI A, POURSINA M, POURSINA D. Radial forging force prediction through MR, ANN, and ANFIS models [J]. Neural Computing and Applications, 2014, 25(3): 849–858. DOI: https://doi.org/10.1007/s00521-014-1562-8.

    Article  Google Scholar 

  10. SAHOO A K, TIWARI M K, MILEHAM A R. Six sigma based approach to optimize radial forging operation variables [J]. Journal of Materials Processing Technology, 2008, 202(1): 125–136. DOI: https://doi.org/10.1016/j.jmatprotec.2007.08.085.

    Article  Google Scholar 

  11. JANG D Y, LIOU J H. Study of stress development in axi-symmetric products processed by radial forging using a 3-D non-linear finite-element method [J]. Journal of Materials Processing Technology, 1998, 74(1–3): 74–82. DOI: https://doi.org/10.1016/S0924-0136(97)00252-5.

    Article  Google Scholar 

  12. SANJARI M, SAIDI P, TAHERI A K, HOSSEIN-ZADEH M. Determination of strain field and heterogeneity in radial forging of tube using finite element method and microhardness test [J]. Materials & Design, 2012, 38(6): 147–153. DOI: https://doi.org/10.1016/j.matdes.2012.01.048.

    Article  Google Scholar 

  13. ZHU F, WANG Z, LV M. Multi-objective optimization method of precision forging process parameters to control the forming quality [J]. International Journal of Advanced Manufacturing Technology, 2016, 83(9–12): 1–9. DOI: https://doi.org/10.1007/s00170-015-7682-1.

    Article  Google Scholar 

  14. HUMPHREYS F J, HATHERLY M. Recrystallization and related annealing phenomena [M]. 2nd ed. Elsevier, 2004: 219–224. DOI: https://doi.org/10.1016/B978-008044164-1/50015-3.

  15. WU Y J, DONG X H. An upper bound model with continuous velocity field for strain inhomogeneity analysis in radial forging process [J]. International Journal of Mechanical Sciences, 2016, 115–116: 385–391. DOI: https://doi.org/10.1016/j.ijmecsci.2016.07.025.

    Article  Google Scholar 

  16. DONG L Y, LAN J, ZHUANG W H. Homogeneity of microstructure and Vickers hardness in cold closed-die forged spur-bevel gear of 20CrMnTi alloy [J]. Journal of Central South University, 2015, 22(5): 1595–1605. DOI: https://doi.org/10.1007/s11771-015-2676-6.

    Article  Google Scholar 

  17. LINDH E, HUTCHINSON B, UEYAMA S. Effect of redundant deformation on recrystallisation behaviour of copper [J]. Scripta Metallurgica Et Materialia, 1993, 29(3): 347–352. DOI: https://doi.org/10.1016/0956-716X(93)90511-P.

    Article  Google Scholar 

  18. KO D C, KIM D H, KIM B M. Application of artificial neural network and Taguchi method to preform design in metal forming considering workability [J]. International Journal of Machine Tools & Manufacture, 1999, 39(5): 771–785. DOI: https://doi.org/10.1016/s0890-6955(98)00055-8.

    Article  Google Scholar 

  19. QIN Xun-peng. Modelling and simulation of contact force in cold rotary forging [J]. Journal of Central South University, 2014, 21(1): 35–42. DOI: https://doi.org/10.1007/s11771-014-1912-9.

    Article  Google Scholar 

  20. LAHOTI G D, ALTAN T. Analysis of the radial forging process for manufacturing rods and tubes [J]. Journal of Engineering for Industry, 1976, 98(1): 265–271. DOI: https://doi.org/10.1115/L3438830.

    Article  Google Scholar 

  21. LAHOTI G D, LIUZZI L, ALTAN T. Design of dies for radial forging of rods and tubes [J]. Journal of Mechanical Working Technology, 1977, 1(1): 99–109. DOI: https://doi.org/10.1016/0378-3804(77)90016-x.

    Article  Google Scholar 

  22. GHAEI A, MOVAHHEDY M R, TAHERI A K. Study of the effects of die geometry on deformation in the radial forging process [J]. Journal of Materials Processing Technology, 2005, 170(1): 156–163. DOI: https://doi.org/10.1016/j.jmatprotec.2005.04.100.

    Article  Google Scholar 

  23. SANJARI M, TAHERI A K, GHAEI A. Prediction of neutral plane and effects of the process parameters in radial forging using an upper bound solution [J]. Journal of Materials Processing Technology, 2007, 186(1): 147–153. DOI: https://doi.org/10.1016/j.jmatprotec.2006.12.029.

    Article  Google Scholar 

  24. WU Y J, DONG X H, YU Q. Upper bound analysis of axial metal flow inhomogeneity in radial forging process [J]. International Journal of Mechanical Sciences, 2015, 93: 102–110. DOI: https://doi.org/10.1016/j.ijmecsci.2015.01.012.

    Article  Google Scholar 

  25. WU Y, DONG X, YU Q. An upper bound solution of axial metal flow in cold radial forging process of rods [J]. International Journal of Mechanical Sciences, 2014, 85(8): 120–129. DOI: https://doi.org/10.1016/j.ijmecsci.2014.05.019.

    Article  Google Scholar 

  26. HSIANG S H, HO H L. Investigation of the influence of various process parameters on the radial forging processes by the finite element method (FEM) [J]. International Journal of Advanced Manufacturing Technology, 2004, 23(9, 10): 627–635. DOI: https://doi.org/10.1007/s00170-003-1646-6.

    Article  Google Scholar 

  27. RONG L, NIE Z R, ZUO T Y. 3D finite element modeling of cogging-down rotary swaging of pure magnesium square billet—Revealing the effect of high-frequency pulse stroking [J]. Materials Science & Engineering A, 2007, 464(1): 28–37. DOI: https://doi.org/10.1016/j.msea.2007.01.086.

    Article  Google Scholar 

  28. LIU X R, ZHOU X D. The forging penetration efficiency of C45 steel stepped shaft radial forging with GFM forging machine [J]. Advanced Materials Research, 2011, 154–155: 593–596. DOI: https://doi.org/10.4028/www.scientific.net/amr.154-155.593.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Wang  (王开) or Zi-zong Zhu  (朱子宗).

Additional information

Foundation item: Projects(51774054, 51974050) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Hx., Wang, K., Luo, R. et al. Influence of radial forging process on strain inhomogeneity of hollow gear shaft using finite element method and orthogonal design. J. Cent. South Univ. 27, 1666–1677 (2020). https://doi.org/10.1007/s11771-020-4398-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4398-7

Key words

关键词

Navigation