Skip to main content
Log in

Effect of sodium sulfate on strength and microstructure of alkali-activated fly ash based geopolymer

硫酸钠对碱激发粉煤灰基地质聚物的强度及微观结构的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The main objective of this paper focuses on the changes that occur in the strength and microstructural properties of sodium silicate activated fly ash based geopolymer due to varying the sulfate salt and water content. A series of tests including X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, physical adsorption and unconfined compressive strength were used to investigate this effect. The results indicate that the higher water content has an adverse effect on the alkali activation and microstructural properties of geopolymer, so the optimum mass ratio of sodium sulfate in alkali-activated geopolymer under different water-to-binder ratios shows a “peak shifting” phenomenon, i.e., the higher the water-to-binder ratio, the higher the optimum mass ratio. Lower presence of sodium sulfate has no significant effect on the alkali-activated geopolymer systems; higher addition of sodium sulfate, however, could cause the symmetrical stretching vibration of Si-O and the symmetrical stretching vibration of Si-O-Si and Al-O-Si, and promote the formation of N-A-S-H gels. Furthermore, the cement effect of the gel and sodium sulfate aggregate could improve the integrity of pore structure obviously. The maximum strength of geopolymer curing at ambient temperature was 52 MPa. This study obtains the rule that the strength properties of alkali-activated geopolymers vary with the water-to-binder ratio and sodium sulfate content. The feasibility of geopolymer co-activated by sodium sulfate and sodium silicate was investigated, and reference for engineering application of alkali-activated geopolymer in salt-bearing areas was provided.

摘要

本文主要研究了水玻璃激发粉煤灰基地质聚物的强度和微观结构随硫酸盐和水胶比的变化. 通过 X 射线衍射、 傅立叶红外光谱、 扫描电镜、 物理吸附和无侧限抗压强度等一系列试验研究了该变化. 结果表明, 高水胶比对地聚物的强度及微观结构有不利影响; 在不同水胶比条件下, 碱激发粉煤灰基地聚物中硫酸钠的最佳质量比表现出“峰移”现象, 即水胶比越高, 最佳质量比越高; 硫酸钠的加入量越低, 对碱激发粉煤灰基地聚合物体系的影响越小; 硫酸钠的加入量增加, 会引起 Si-O 的对称拉伸 振动及 Si-O-Si 和 Al-O-Si 的对称拉伸振动, 促进 N-A-S-H 凝胶的形成. 凝胶和硫酸钠集料的胶结作用能明显改善孔隙结构的完整性. 常温养护地聚物的最大强度为 52 MPa. 本文得出了碱激发粉煤灰基地聚物的强度特性随水胶比和硫酸钠含量的变化规律, 研究了硫酸钠和硅酸钠共同激发地质聚合物的可行性, 能够为碱激发粉煤灰基地聚物在含盐地区的工程应用提供参考.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. KOLEŻYŃSKI A, KRÓL M, ŻYCHOWICZ M. The structure of geopolymers-Theoretical studies [J]. Journal of Molecular Structure, 2018, 1163: 465–471. DOI: https://doi.org/10.1016/j.molstruc.2018.03.033.

    Article  Google Scholar 

  2. FAN Feng-hong, LIU Zhen, XU Guo-ji, PENG Hui, CAI C S. Mechanical and thermal properties of fly ash based geopolymers [J]. Construction and Building Materials, 2018, 160: 66–81. DOI: https://doi.org/10.1016/j.conbuildmat.2017.11.023.

    Article  Google Scholar 

  3. NATH S K, MAITRA S, MUKHERJEE S. Microstructural and morphological evolution of fly ash based geopolymers [J]. Construction and Building Materials, 2016, 111: 758–765. DOI: https://doi.org/10.1016/j.conbuildmat.2016.02.106.

    Article  Google Scholar 

  4. PEYNE J, JOUSSEIN E, GAUTRON J, DOUDEAU J, ROSSIGNOL S. Feasibility of producing geopolymer binder based on a brick clay mixture [J]. Ceramics International, 2017, 43: 9860–9871. DOI: https://doi.org/10.1016/j.ceramint.2017.04.169.

    Article  Google Scholar 

  5. NMIRI A, DUC M, HAMDI N, MARZOUK O Y, SRASRA E. Replacement of alkali silicate solution with silica fume in metakaolin-based geopolymers [J]. International Journal of Minerals Metallurgy and Materials, 2019, 26(5): 555–564. DOI: https://doi.org/10.1007/s12613-019-1764-2.

    Article  Google Scholar 

  6. GHOSH P, KUMAR H, BISWAS K. Fly ash and kaolinite-based geopolymers: Processing and assessment of some geotechnical properties [J]. International Journal of Geotechnical Engineering, 2016, 10(4): 1–10. DOI: https://doi.org/10.1080/19386362.2016.1151621.

    Article  Google Scholar 

  7. CHEN Xiao, ZHU Guo-rui, ZHOU Ming-kai, WANG Jie, CHEN Qian. Effect of organic polymers on the properties of slag-based geopolymers [J]. Construction and Building Materials, 2018, 167: 216–224. DOI: https://doi.org/10.1016/j.conbuildmat.2018.02.031.

    Article  Google Scholar 

  8. PROVIS J L. Alkali-activated materials [J]. Cement and Concrete Research, 2018, 114: 40–48. DOI: https://doi.org/10.1016/j.cemconres.2017.02.009.

    Article  Google Scholar 

  9. PROVIS J L, BERNAL S A. Geopolymers and related alkali-activated materials [J]. Annual Review of Materials Research, 2014, 44(1): 299–327. DOI: https://doi.org/10.1146/annurevmatsci-070813-113515.

    Article  Google Scholar 

  10. ABABNEH F A, ALAKHRAS A I, HEIKAL M, IBRAHIM S M. Stabilization of lead bearing sludge by utilization in fly ash-slag based geopolymer [J]. Construction and Building Materials, 2019, 227: 116694. DOI: https://doi.org/10.1016/j.conbuildmat.2019.116694.

    Article  Google Scholar 

  11. HEIKAL M, NASSAR M Y, EL-SAYED G, IBRAHIM S M. Physico-chemical, mechanical, microstructure and durability characteristics of alkali activated Egyptian slag [J]. Construction and Building Materials, 2014, 69: 60–72. DOI: https://doi.org/10.1016/j.conbuildmat.2014.07.026.

    Article  Google Scholar 

  12. ODERJI S Y, CHEN B, AHMAD M R, SHAH S F A. Fresh and hardened properties of one-part fly ash-based geopolymer binders cured at room temperature: Effect of slag and alkali activators [J]. Journal of Cleaner Production, 2019, 225: 1–10. DOI: https://doi.org/10.1016/j.jclepro.2019.03.290.

    Article  Google Scholar 

  13. AHN J, KIM W S, UM W. Development of metakaolin-based geopolymer for solidification of sulfate-rich HyBRID sludge waste [J]. Journal of Nuclear Materials, 2019, 518: 247–255. DOI: https://doi.org/10.1016/j.jnucmat.2019.03.008.

    Article  Google Scholar 

  14. PRASITTISOPIN L, SEREEWATTHANAWUT I. Effects of seeding nucleation agent on geopolymerization process of fly-ash geopolymer [J]. Frontiers of Structural and Civil Engineering, 2018, 12: 16–25. DOI: https://doi.org/10.1007/s11709-016-0373-7.

    Article  Google Scholar 

  15. CHEQUER D L, FRIZON F. Impact of sulfate and nitrate incorporation on potassium- and sodium-based geopolymers: Geopolymerization and materials properties [J]. Journal of Materials Science, 2011, 46(17): 5657–5664. DOI: https://doi.org/10.1007/s10853-011-5516-6.

    Article  Google Scholar 

  16. KOMNITSAS K, ZAHARAKI D, BARTZAS G. Effect of sulphate and nitrate anions on heavy metal immobilisation in ferronickel slag geopolymers [J]. Applied Clay Science, 2013, 73: 103–109. DOI: https://doi.org/10.1016/j.clay.2012.09.018.

    Article  Google Scholar 

  17. CRIADO M, FERNANDEZ J A, PALOMO A. Effect of sodium sulfate on the alkali activation of fly ash [J]. Cement and Concrete Composites, 2010, 32: 589–594. DOI: https://doi.org/10.1016/j.cemconcomp.2010.05.002.

    Article  Google Scholar 

  18. ISMAIL I, BERNAL S A, PROVIS J L, HANDAN S, van DEVENTER J S J. Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure [J]. Materials and Structures, 2013, 46: 361–373. DOI: https://doi.org/10.1617/s11527-012-9906-2.

    Article  Google Scholar 

  19. ZHANG Yao-jun, CHAI Qian, YANG Meng-yang, FAN Bo-wen, LI Xin. Synthesis of bottom ash-based geopolymer co-activated by double salts [J]. Journal of Functional Materials, 2016, 47(9): 9176–9181. DOI: https://doi.org/10.3969/j.issn.1001-9731.2016.09.034. (in Chinese)

    Google Scholar 

  20. CUI Yong, WANG Dong-ming, WANG Yi-ren, SUN Rui, RUI Ya-feng. Effects of the n(H2O: Na2Oeq) ratio on the geopolymerization process and microstructures of fly ash-based geopolymers [J]. Journal of Non-Crystalline Solids, 2019, 511: 19–28. DOI: https://doi.org/10.1016/j.jnoncrysol.2018.12.033.

    Article  Google Scholar 

  21. DUXSON P, A FERNÁNDEZ-JIMÉNEZ, PROVIS J L, LUKEY G C, PALOMO A, van DEVENTER J S J. Geopolymer technology: The current state of the art [J]. Journal of Materials Science, 2007, 42(9): 2917–2933. DOI: https://doi.org/10.1007/s10853-006-0637-z.

    Article  Google Scholar 

  22. KUMAR S, KRISTALY F, MUCSI G. Geopolymerisation behaviour of size fractioned fly ash [J]. Advanced Powder Technology, 2015, 26(1): 24–30. DOI: https://doi.org/10.1016/j.apt.2014.05.002.

    Article  Google Scholar 

  23. LI Xian-bo, YE Jun-jian, LIU Zhi-hong, QIU Yue-qin, LI Long-jiang, MAO Song, WANG Xiao-chen, ZHANG Qin. Microwave digestion and alkali fusion assisted hydrothermal synthesis of zeolite from coal fly ash for enhanced adsorption of Cd(II) in aqueous solution [J]. Journal of Central South University, 2018, 25(1): 9–20. DOI: https://doi.org/10.1007/s11771-018-3712-0.

    Article  Google Scholar 

  24. LV Qing-feng, JIANG Lu-sha, MA Bo, ZHAO Ben-hai, HUO Zhen-sheng. A study on the effect of the salt content on the solidification of sulfate saline soil solidified with an alkali-activated geopolymer [J]. Construction and Building Materials, 2018, 176: 68–74. DOI: https://doi.org/10.1016/j.conbuildmat.2018.05.013.

    Article  Google Scholar 

  25. PEYNE J, JOUSSEIN E, GAUTRON J, DOUDEAU J, ROSSIGNOL S. Feasibility of producing geopolymer binder based on a brick clay mixture [J]. Ceramics International, 2017, 43(13): 9860–9871. DOI: https://doi.org/10.1016/j.ceramint.2017.04.169.

    Article  Google Scholar 

  26. KROL M, ROZEK P, CHLEBDA D, MOZGAWA W. Influence of alkali metal cations/type of activator on the structure of alkali-activated fly ash-ATR-FTIR studies [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 198: 33–37. DOI: https://doi.org/10.1016/j.saa.2018.02.067.

    Article  Google Scholar 

  27. RAKHIMOVA N R, RAKHIMOV R Z, MOROZOV V P, GAIFULLIN A R, POTAPOVA L I, GUBAIDULLINA A M, OSIN Y N. Marl-based geopolymers incorporated with limestone: A feasibility study [J]. Journal of Non-Crystalline Solids, 2018, 492: 1–10. DOI: https://doi.org/10.1016/j.jnoncrysol.2018.04.015.

    Article  Google Scholar 

  28. KOTTA A B, KARAK S K, KUMAR M. Chemical, physical, thermal, textural and mineralogical studies of natural iron ores from Odisha and Chhattisgarh regions, India [J]. Journal of Central South University, 2018, 25(12): 2857–2870. DOI: https://doi.org/10.1007/s11771-018-3958-6

    Article  Google Scholar 

  29. HAJIMOHAMMADI A, NGO T, KASHANI A. Glass waste versus sand as aggregates: The characteristics of the evolving geopolymer binders [J]. Journal of Cleaner Production, 2018, 193: 593–603. DOI: https://doi.org/10.1016/j.jclepro.2018.05.086.

    Article  Google Scholar 

  30. LEE W K W, van DEVENTER J S J. The effects of inorganic salt contamination on the strength and durability of Geopolymers [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 211: 115–126. DOI: https://doi.org/10.1016/S0927-7757(02)00239-X.

    Article  Google Scholar 

  31. LV Qing-feng, JIA Meng-xue, WANG Sheng-xin, ZHOU Gang, WANG Qing-dong. Effect of salt content on compressive strength of solidified sulphate saline soil [J]. Journal of Central South University: Science and Technology, 2018, 49(3): 718–724. DOI: https://doi.org/10.11817/j.issn.1672-7207.2018.03.027. (in Chinese)

    Google Scholar 

  32. LI Qin, XU Hui, LI Fei-hu, SHEN Li-feng, ZHAI Jian-ping. Synthesis of geopolymer composites from blends of CFBC fly and bottom ashes [J]. Fuel, 2012, 97: 366–372. DOI: https://doi.org/10.1016/j.fuel.2012.02.059.

    Article  Google Scholar 

  33. MAJIDI B. Geopolymer technology, from fundamentals to advanced applications: A review [J]. Materials Technology, 2009, 24(2): 79–87. DOI: https://doi.org/10.1179/175355509X449355.

    Article  Google Scholar 

  34. HAJIMOHAMMADI A, van DEVENTER J S J. Characterisation of one-part geopolymer binders made from fly ash [J]. Waste and Biomass Valorization, 2017, 8(1): 225–233. DOI: https://doi.org/10.1007/s12649-016-9582-5.

    Article  Google Scholar 

  35. LEONG H Y, ONG D E L, SANJAYAN J G, NAZARI A. The effect of different Na2O and K2O ratios of alkali activator on compressive strength of fly ash based-geopolymer [J]. Construction and Building Materials, 2016, 106: 500–511. DOI: https://doi.org/10.1016/j.conbuildmat.2015.12.141.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-feng Lv  (吕擎峰).

Additional information

Foundation item: Project(51878322) supported by the National Natural Science Foundation of China; Project(18YF1FA112) supported by Key Research and Development Program of Gansu Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Qf., Wang, Zs., Gu, Ly. et al. Effect of sodium sulfate on strength and microstructure of alkali-activated fly ash based geopolymer. J. Cent. South Univ. 27, 1691–1702 (2020). https://doi.org/10.1007/s11771-020-4400-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4400-4

Key words

关键词

Navigation