Skip to main content
Log in

Directed coordination study of [Pd(en)(H2O)2]2+ with hetero-tripeptides containing C-terminus methyl esters employing NMR spectroscopy

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Alkylation of the C-terminus acids in small peptides allows direction to amine and amide coordination, while changing the peptide composition to form tetradentate κ4[n,5,5], where n = 5-, 6-, 7-, or 8-membered ring coordination geometries, can be achieved. The alkylated tripeptide ligands, TrpAlaGly(OMe), β-Asp(OtBu)AlaGly(OMe), Asp(OtBu)AlaGly(OMe), and the fully methylated GSH, γ-Glu(OMe)Cys(SMe)Gly(OMe), were synthesized and their coordination properties to [Pd(en)(H2O)2]2+ were studied. pH-dependent coordination was analyzed by NMR spectroscopy and the coordination to the alkylated tripeptides at selected pH values inferred from their NMR spectra. If selective coordination of amine/amide donors results in metal complexation, allowing for flexible and adjustable ligand frameworks, then this strategy could potentially be extended to other metal ions and peptide system.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Ala:

Alanine

Asp:

Aspartic acid

Cys:

Cysteine

En:

Ethylene diamine

Fmoc:

Fluorenylmethoxycarbonyl

Glu:

Glutamic acid

Gly:

Glycine

GSH:

Glutathione

GSMe:

S-Methylated glutathione

Trp:

Tryptophan

Z:

Benzyl carbamate

References

  1. Soldevila-Barreda JJ, Sadler PJ (2015) Approaches to the design of catalytic metallodrugs. Curr Opin Chem Biol 25:172–183. https://doi.org/10.1016/j.cbpa.2015.01.024

    Article  CAS  PubMed  Google Scholar 

  2. Metzler-Nolte N, Guo Z (2016) Themed Issue on “metallodrugs: activation, targeting, and delivery”. Dalton Trans 45(33):12965–12965. https://doi.org/10.1039/C6DT90135B

    Article  CAS  PubMed  Google Scholar 

  3. Bradford SS, Cowan JA (2014) From traditional drug design to catalytic metallodrugs: a brief history of the use of metals in medicine. Metallodrugs 1:10–23

    Article  Google Scholar 

  4. Mjos KD, Orvig C (2014) Metallodrugs in medicinal inorganic chemistry. Chem Rev 114:4540–4563

    Article  CAS  Google Scholar 

  5. Sigel H, Martin RB (1982) Coordinating properties of the amide bond. Stability and structure of metal ion complexes of peptides and related ligands. Chem Rev 82(4):385–426

    Article  CAS  Google Scholar 

  6. Sóvágó I, Kállay C, Várnagy K (2012) Peptides as complexing agents: factors influencing the structure and thermodynamic stability of peptide complexes. Coord Chem Rev 256(19):2225–2233. https://doi.org/10.1016/j.ccr.2012.02.026

    Article  CAS  Google Scholar 

  7. Griffith DM, Bíró L, Platts JA, Müller-Bunz H, Farkas E, Buglyó P (2012) Synthesis and solution behaviour of stable mono-, di-and trinuclear Pd(II) complexes of 2,5-pyridinedihydroxamic acid: X-ray crystal structure of a novel Pd(II) hydroxamato complex. Inorg Chim Acta 380(1):291–300. https://doi.org/10.1016/j.ica.2011.09.050

    Article  CAS  Google Scholar 

  8. Perinelli M, Guerrini R, Albanese V, Marchetti N, Bellotti D, Gentili S, Tegoni M, Remelli M (2020) Cu(II) coordination to His-containing linear peptides and related branched ones: Equalities and diversities. J Inorg Biochem 205:110980. https://doi.org/10.1016/j.jinorgbio.2019.110980

    Article  CAS  PubMed  Google Scholar 

  9. Peana M, Gumienna-Kontecka E, Piras F, Ostrowska M, Piasta K, Krzywoszynska K, Medici S, Zoroddu MA (2020) Exploring the specificity of rationally designed peptides reconstituted from the cell-free extract of deinococcus radiodurans toward Mn(II) and Cu(II). Inorg Chem. https://doi.org/10.1021/acs.inorgchem.9b03737

    Article  PubMed  Google Scholar 

  10. Vicatos GM, Jackson GE, Hammouda AN, Bonomo RP, Valora G (2019) Potentiometric and spectroscopic studies of the complex formation between copper(II) and Gly-Leu-Phe or Sar-Leu-Phe tripeptides. Polyhedron 170:553–563. https://doi.org/10.1016/j.poly.2019.06.011

    Article  CAS  Google Scholar 

  11. Gavrish SP, Lampeka YD, Babak MV, Arion VB (2018) Palladium complexes of N, N′-Bis(2-aminoethyl)oxamide (H2L): structural (PdIIL, PdII2L2, and PdIVLCl2), electrochemical, dynamic 1H NMR, and cytotoxicity studies. Inorg Chem 57(3):1288–1297. https://doi.org/10.1021/acs.inorgchem.7b02732

    Article  CAS  PubMed  Google Scholar 

  12. Gonzalez P, Vileno B, Bossak K, El Khoury Y, Hellwig P, Bal W, Hureau C, Faller P (2017) Cu(II) binding to the peptide Ala-His-His, a chimera of the canonical Cu(II)-binding motifs Xxx-His and Xxx-Zzz-His. Inorg Chem 56(24):14870–14879. https://doi.org/10.1021/acs.inorgchem.7b01996

    Article  CAS  PubMed  Google Scholar 

  13. Park GY, Lee JY, Himes RA, Thomas GS, Blackburn NJ, Karlin KD (2014) Copper-peptide complex structure and reactivity when found in conserved His-Xaa-His sequences. J Am Chem Soc 136(36):12532–12535. https://doi.org/10.1021/ja505098v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sóvágó I, Ősz K (2006) Metal ion selectivity of oligopeptides. Dalton Trans 32:3841–3854. https://doi.org/10.1039/B607515K

    Article  Google Scholar 

  15. Kozlowski H, Bal W, Dyba M, Kowalik-Jankowska T (1999) Specific structure-stability relations in metallopeptides. Coord Chem Rev 184(1):319–346. https://doi.org/10.1016/S0010-8545(98)00261-6

    Article  CAS  Google Scholar 

  16. Murphy JM, Powell BA, Brumaghim JL (2020) Stability constants of bio-relevant, redox-active metals with amino acids: the challenges of weakly binding ligands. Coord Chem Rev 412:213253. https://doi.org/10.1016/j.ccr.2020.213253

    Article  CAS  Google Scholar 

  17. El-Sherif AA (2012) Coordination chemistry of palladium(II) ternary complexes with relevant biomolecules. In: Innocenti A (ed) Stoichiometry and research: the importance of quantity in biomedicine. InTech, intechopen.com, Rijeka, pp 79–120

    Google Scholar 

  18. Jószai V, Nagy Z, Ősz K, Sanna D, Di Natale G, La Mendola D, Pappalardo G, Rizzarelli E, Sóvágó I (2006) Transition metal complexes of terminally protected peptides containing histidyl residues. J Inorg Biochem 100(8):1399–1409. https://doi.org/10.1016/j.jinorgbio.2006.04.003

    Article  CAS  PubMed  Google Scholar 

  19. Livingstone SE, Nolan JD (1968) Metal chelates of biologically important compounds. I. Complexes of dl-ethionine and S-methyl-l-cysteine. Inorg Chem 7(7):1447–1451

    Article  CAS  Google Scholar 

  20. Chandrasekharan M (1973) Cysteine complexes of palladium (II) and platinum (II). Inorg Chim Acta 7(1):88–90. https://doi.org/10.1016/S0020-1693(00)94785-6

    Article  CAS  Google Scholar 

  21. Pettit LD, Bezer M (1985) Complex formation between palladium(II) and amino acids, peptides and related ligands. Coord Chem Rev 61:97–114. https://doi.org/10.1016/0010-8545(85)80003-5

    Article  CAS  Google Scholar 

  22. McAuliffe CA (1967) The infrared spectra of palladium(II) and platinum(II) complexes of (±)-methionine. J Chem Soc A Inorg Phys Theor. https://doi.org/10.1039/J19670000641

    Article  Google Scholar 

  23. Ágoston CG, Jankowska TK, Sóvágó I (1999) Potentiometric and NMR studies on palladium (II) complexes of oligoglycines and related ligands with non-co-ordinating side chains. J Chem Soc Dalton Trans 18:3295–3302

    Article  Google Scholar 

  24. Wilson EW, Martin RB (1970) Circular dichroism of palladium(II) complexes of amino acids and peptides. Inorg Chem 9(3):528–532. https://doi.org/10.1021/ic50085a019

    Article  CAS  Google Scholar 

  25. Krężel A, Bal W (1999) Coordination chemistry of glutathione. Acta Biochim Pol 46(3):567–580

    Article  Google Scholar 

  26. Chow ST, McAuliffe CA, Sayle BJ (1975) Metal complexes of amino acids and derivatives—IX: reactions of the tripeptide, glutathione, with divalent cobalt, nickel, copper and palladium salts. J Inorg Nucl 37(2):451–454. https://doi.org/10.1016/0022-1902(75)80354-x

    Article  CAS  Google Scholar 

  27. Bresson C, Spezia R, Solari PL, Jankowski CK, Den Auwer C (2015) XAS examination of glutathione–cobalt complexes in solution. J Inorg Biochem 142:126–131. https://doi.org/10.1016/j.jinorgbio.2014.10.006

    Article  CAS  PubMed  Google Scholar 

  28. Mah V, Jalilehvand F (2012) Lead(II) complex formation with glutathione. Inorg Chem 51(11):1–14. https://doi.org/10.1021/ic300496t

    Article  CAS  Google Scholar 

  29. Shoeib T, Sharp BL (2013) Monomeric cisplatin complexes with glutathione: coordination modes and binding affinities. Inorg Chim Acta 405:258–264. https://doi.org/10.1016/j.ica.2013.06.006

    Article  CAS  Google Scholar 

  30. Jószai V, Sóvágó I (2011) Palladium(II) complexes of oligopeptides containing aspartyl and glutamyl residues. Polyhedron 30(12):2114–2120. https://doi.org/10.1016/j.poly.2011.05.032

    Article  CAS  Google Scholar 

  31. Shimazaki Y, Yamauchi O (2012) Group-10 metal complexes of biological molecules and related ligands: structural and functional properties. Chem Biodivers 9(9):1635–1658. https://doi.org/10.1002/cbdv.201100446

    Article  CAS  PubMed  Google Scholar 

  32. Lihi N, Lukács M, Szűcs D, Várnagy K, Sóvágó I (2017) Nickel(II), zinc(II) and cadmium(II) complexes of peptides containing separate aspartyl and cysteinyl residues. Polyhedron 133:364–373. https://doi.org/10.1016/j.poly.2017.05.044

    Article  CAS  Google Scholar 

  33. Picquart M, Grajcar L, Baron MH, Abedinzadeh Z (1999) Vibrational spectroscopic study of glutathione complexation in aqueous solutions. Biospectroscopy 5(6):328–337. https://doi.org/10.1002/(SICI)1520-6343(1999)5:6<328:AID-BSPY2>3.0.CO;2-J

    Article  CAS  PubMed  Google Scholar 

  34. Mukhtiar M, Jan SU, Khan MF, Ullah N, Hussain A, Rehman SU, Qureshi MM (2018) Palladium glutathione, N-acetylcysteine, d-penicillamine conjugation chemistry. Pak J Pharm Sci 31(1):213–219

    CAS  PubMed  Google Scholar 

  35. Mirzahosseini A, Somlyay M, Noszál B (2015) The comprehensive acid–base characterization of glutathione. Chem Phys Lett 622:50–56. https://doi.org/10.1016/j.cplett.2015.01.020

    Article  CAS  Google Scholar 

  36. Singh G, Dogra SD, Kaur S, Tripathi SK, Prakash S, Rai B, Saini GSS (2015) Structure and vibrations of glutathione studied by vibrational spectroscopy and density functional theory. Spectrochim Acta Part A Mol Biomol Spectrosc 149:505–515. https://doi.org/10.1016/j.saa.2015.04.062

    Article  CAS  Google Scholar 

  37. Rubino FM (2015) Toxicity of glutathione-binding metals: a review of targets and mechanisms. Toxics 3(1):20–62. https://doi.org/10.3390/toxics3010020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lemma K, Elmroth S, Elding L (2002) Substitution reactions of [Pt(dien)Cl]+, [Pt(dien)(GSMe)]2+, cis- [PtCl2(NH3)2] and cis-[Pt(NH3)2(GSMe)2]2+ (GSMe = S-methylglutathione) with some sulfur-bonding chemoprotective agents. J Chem Soc Dalton Trans 10(7):1281–1286

    Article  Google Scholar 

  39. Teuben JM, i Zubiri MR, Reedijk J (2000) Glutathione readily replaces the thioether on platinum in the reaction with [Pt(dien)(GSMe)]2+ (GSMe = S-methylated glutathione); a model study for cisplatin–protein interactions. J Chem Soc Dalton Trans. https://doi.org/10.1039/A908135F

    Article  Google Scholar 

  40. Zabel R, Weber G (2016) Comparative study of the oxidation behavior of sulfur-containing amino acids and glutathione by electrochemistry-mass spectrometry in the presence and absence of cisplatin. Anal Bioanal Chem 408(4):1237–1247. https://doi.org/10.1007/s00216-015-9233-x

    Article  CAS  PubMed  Google Scholar 

  41. Foulds G (1998) Nickel 1987–1989. Coord Chem Rev 169(1):3–127. https://doi.org/10.1016/S0010-8545(98)00003-4

    Article  CAS  Google Scholar 

  42. Ward TR (2019) ACS central science virtual issue on bioinspired catalysis. ACS Central Sci 5(11):1732–1735. https://doi.org/10.1021/acscentsci.9b01045

    Article  CAS  Google Scholar 

  43. Gonzalez P, Bossak K, Stefaniak E, Hureau C, Raibaut L, Bal W, Faller P (2018) N-terminal Cu-binding motifs (Xxx-Zzz-His, Xxx-His) and their derivatives: chemistry, biology and medicinal applications. Chem Eur J 24(32):8029–8041. https://doi.org/10.1002/chem.201705398

    Article  CAS  PubMed  Google Scholar 

  44. Chen S, Vasquez L, Noll BC, Rakowski DuBois M (1997) Synthesis and characterization of mononuclear indoline complexes. Studies of σ and π bonding modes. Organometallics 16(8):1757–1764. https://doi.org/10.1021/om960744e

    Article  CAS  Google Scholar 

  45. Sundberg R (2010) Electrophilic substitution reactions of indoles. Top Heterocycl Chem. https://doi.org/10.1007/7081_2010_52

    Article  Google Scholar 

  46. Singh MP, Saleem F, Pal RS, Singh AK (2017) Palladacycles having normal and spiro chelate rings designed from bi- and tridentate ligands with an indole core: structure, synthesis and applications as catalysts. N J Chem 41(19):11342–11352. https://doi.org/10.1039/c7nj02116j

    Article  CAS  Google Scholar 

  47. Kaminskaia NV, Ullmann GM, Fulton DB, Kostic NM (2000) Spectroscopic, kinetic, and mechanistic study of a new mode of coordination of indole derivatives to platinum(II) and palladium(II) ions in complexes. Inorg Chem 39(22):5004–5013. https://doi.org/10.1021/ic000254l

    Article  CAS  PubMed  Google Scholar 

  48. Zhang L, Lin Y-J, Li Z-H, Jin G-X (2015) Rational design of polynuclear organometallic assemblies from a simple heteromultifunctional ligand. J Am Chem Soc 137(42):13670–13678. https://doi.org/10.1021/jacs.5b08826

    Article  CAS  PubMed  Google Scholar 

  49. Armarego WLF (2017) Purification of laboratory chemicals, 8th edn. Butterworth-Heinemann, Oxford. https://doi.org/10.1016/B978-0-12-805457-4.50008-2

    Book  Google Scholar 

  50. Azizi N, Khajeh Amiri A, Bolourtchian M, Saidi MR (2009) A green and highly efficient alkylation of thiols in water. J Iran Chem Soc 6(4):749–753. https://doi.org/10.1007/BF03246165

    Article  CAS  Google Scholar 

  51. Li J, Sha Y (2008) A convenient synthesis of amino acid methyl esters. Molecules. https://doi.org/10.3390/molecules13051111

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mccormick BJ, Jaynes EN, Kaplan RI, Clark HC, Ruddick JD (1972) Dichloro(ethylenediamine)palladium(II) and (2,2′-Bipyridine)dichloropalladium (II). Inorg Synth 13:216–218

    Google Scholar 

  53. Siebert AFM, Sheldrick WS (1997) pH-Dependent competition between N, S and N, N′ chelation in the reaction of [Pt(en)(H2O)2]2+ (en = H2NCH2CH2NH2) with methionine-containing di- and tri-peptides. J Chem Soc Dalton Trans 3:385–394. https://doi.org/10.1039/A604689D

    Article  Google Scholar 

  54. Lim MC, Bruce Martin R (1976) The nature of cis amine Pd(II) and antitumor cis amine Pt(II) complexes in aqueous solutions. J Inorg Nucl Chem 38(10):1911–1914. https://doi.org/10.1016/0022-1902(76)80121-2

    Article  CAS  Google Scholar 

  55. Gutz IGR CurTiPot – pH and acid–base titration curves, 4.2 edn. http://www.iq.usp.br/gutz/Curtipot_.html

  56. Sakina K, Kawazura K, Morihara K (1988) Enzymatic synthesis of delta sleep-inducing peptide. Int J Pept Protein Res 31(2):245–252. https://doi.org/10.1111/j.1399-3011.1988.tb00030.x

    Article  CAS  PubMed  Google Scholar 

  57. Sultane PR, Mete TB, Bhat RG (2015) A convenient protocol for the deprotection of N-benzyloxycarbonyl (Cbz) and benzyl ester groups. Tetrahedron Lett 56(16):2067–2070. https://doi.org/10.1016/j.tetlet.2015.02.131

    Article  CAS  Google Scholar 

  58. Höck S, Marti R, Riedl R, Simeunovic M (2010) Thermal cleavage of the Fmoc protection group. CHIMIA Int J Chem 64(3):200–202. https://doi.org/10.2533/chimia.2010.200

    Article  Google Scholar 

  59. Bajusz S, Medzihradszky K, Kisfaludy L, Low M, Paulay Z, Lang MT, Szporny L (1968) Total synthesis of human corticotropin. Hungary Patent HU155254

  60. Masignani V, Scarlato V, Scarselli M, Galeotti C, Mora M (2001) Antigenic meningococcal peptides Italy patent WO 01/04316 A2

  61. Chekalin SV, Golovlev VV, Kozlov AA, Matveets YA, Yartsev AP, Letokhov VS (1988) Femtosecond laser photoionization mass spectrometry of tryptophan-containing proteins. J Phys Chem 92(24):6855–6858. https://doi.org/10.1021/j100335a001

    Article  CAS  Google Scholar 

  62. Kermack WO, Matheson NA (1957) The synthesis of some analogues of glutathione. Biochem J 65(1):45–48. https://doi.org/10.1042/bj0650045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. El-Faham A, Albericio F (2011) Peptide coupling reagents, more than a letter soup. Chem Rev 111(11):6557–6602. https://doi.org/10.1021/cr100048w

    Article  CAS  PubMed  Google Scholar 

  64. Montalbetti CAGN, Falque V (2005) Amide bond formation and peptide coupling. Tetrahedron 61(46):10827–10852. https://doi.org/10.1016/j.tet.2005.08.031

    Article  CAS  Google Scholar 

  65. Joullié MM, Lassen KM (2010) Evolution of amide bond formation. ARKIVOC viii:189–250

    Google Scholar 

  66. Wuts PGM, Greene TW (2006) Green’s protective groups in organic synthesis. Green’s protective groups in organic synthesis, 4th edn. John Wiley & Son, Inc, Hoboken

    Book  Google Scholar 

  67. Lide DR (2004) CRC handbook chemistry and physics, 85th edn. CRC Press, Boca Raton

    Google Scholar 

  68. Alexander MD, Spillert CA (1970) Monodentate ethylenediamine complex of cobalt(III). Inorg Chem 9(10):2344–2346. https://doi.org/10.1021/ic50092a028

    Article  CAS  Google Scholar 

  69. Hay RW, Pujari MP (1986) The palladium (II) promoted hydrolysis of methyl, ethyl and isopropyl glycylglycylglycinate. Inorg Chim Acta 123(1):47–51

    Article  CAS  Google Scholar 

  70. Hay RW, Pujari MP (1986) The palladium (II) promoted hydrolysis of methyl, ethyl and isopropyl glycylglycylglycinate. Inorg Chim Acta 123(1):47–51

    Article  CAS  Google Scholar 

  71. Ozsváth A, Farkas E, Diószegi R, Buglyó P (2019) Versatility and trends in the interaction between Pd(II) and peptide hydroxamic acids. N J Chem 43:8239–8250

    Article  Google Scholar 

  72. Martin RB, Pitner TP (1971) Inversion and proton exchange at asymmetric nitrogen centers in palladium (II) complexes. J Am Chem Soc 93(18):4400–4405

    Article  CAS  Google Scholar 

  73. Pitner TP, Wilson EW, Martin RB (1972) Properties of Palladium8II) complexes of peptides and histidine in basic solutions. Inorg Chem 11(4):738–742

    Article  CAS  Google Scholar 

  74. Haas K, Ponikwar W, Nöth H, Beck W (1998) Facile synthesis of cyclic tetrapeptides from nonactivated peptide esters on metal centers. Angew Chem Int Ed 37(8):1086–1089. https://doi.org/10.1002/(SICI)1521-3773(19980504)37:8<1086:AID-ANIE1086>3.0.CO;2-V

    Article  CAS  Google Scholar 

  75. Carvalho MA, Souza BC, Paiva REF, Bergamini FRG, Gomes AF, Gozzo FC, Lustri WR, Formiga ALB, Rigatto G, Corbi PP (2012) Synthesis, spectroscopic characterization, DFT studies, and initial antibacterial assays in vitro of a new palladium(II) complex with tryptophan. J Coord Chem 65(10):1700–1711. https://doi.org/10.1080/00958972.2012.679660

    Article  CAS  Google Scholar 

  76. Carvalho MA, Shishido SM, Souza BC, de Paiva REF, Gomes AF, Gozzo FC, Formiga ALB, Corbi PP (2014) A new platinum complex with tryptophan: synthesis, structural characterization, DFT studies and biological assays in vitro over human tumorigenic cells. Spectrochim Acta Part A Mol Biomol Spectrosc 122:209–215. https://doi.org/10.1016/j.saa.2013.11.044

    Article  CAS  Google Scholar 

  77. Vasquez LD, Noll BC, Rakowski DuBois M (1998) Mononuclear indoline complexes. 2. Synthesis, structure, and reactivity of [(Cymene)Ru(η1-N-indoline)(CH3CN)2](OTf)2. Organometallics 17(5):976–981. https://doi.org/10.1021/om970968c

    Article  CAS  Google Scholar 

  78. Farkas E, Sóvágó I (2017) Metal complexes of amino acids and peptides. In: Amino acids, peptides and proteins, vol 41. R SocChem, pp 100–151. https://doi.org/10.1039/9781782626619-00100

Download references

Acknowledgements

Financial support by The Icelandic Centre of Research (Rannis) grant nr 152323 is gratefully acknowledged. SGS and GRR thank COST Action CM1105 for STSM Grant and Prof. Etelka Farkas for hosting the STMS at the early stages of this project. Dr Sigridur Jonsdottir is thanked for assistance with the collection of mass spectrometry data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigridur G. Suman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 7131 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monger, L.J., Runarsdottir, G.R. & Suman, S.G. Directed coordination study of [Pd(en)(H2O)2]2+ with hetero-tripeptides containing C-terminus methyl esters employing NMR spectroscopy. J Biol Inorg Chem 25, 811–825 (2020). https://doi.org/10.1007/s00775-020-01804-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-020-01804-0

Keywords

Navigation