Skip to main content

Advertisement

Log in

Coastline variability of several Latin American cities alongside Pacific Ocean due to the unusual “Sea Swell” events of 2015

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study aims to report the short-term coastline dynamics and inundation limits of coastal cities along the Eastern Pacific due to the sea swell events that occurred during April to May 2015. The multi-temporal satellite datasets from Landsat such as Enhanced Thematic Mapper (L7 ETM+) and Operational Land Imager/Thermal Infrared Sensor (L8 OLI/TIRS) of different periods before and after the swell events were used to identify the shoreline changes. The satellite images were pre-processed using ERDAS imagine 9.2, and the coastline was digitized in ArcGIS 10.4.1 for ten cities spread across from Mexico to Chile (in Pacific coast) using the spectral water indices, and the shoreline change rate and erosion/accretion pattern at each transect were estimated using the statistical parameters embedded in Digital Shoreline Analysis System (DSAS). The maximum erosion and accretion were observed in El Salvador (268 m) and Huatulco (Mexico) (115 m), respectively. Likewise, the maximum inundation was observed in El Salvador with 268 m and Acapulco (Mexico) with 254 m, and the tide gauge data suggest a possible relation to the bathymetry and the geomorphological conditions of the coast. Overall, the results indicate that the Eastern Pacific Ocean side sea swell events has led to extreme coastal flooding in recent years due to the increase in the mean sea level and the unpredictable variation in El Niño/Southern Oscillation events.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

ACE:

Accumulated Cyclone Energy

CENAPRED:

Centro Nacional de Prevención de Desastres (National Center for Disaster Prevention)

CONAGUA:

Comisión Nacional del Agua, Mexico (National Water Commission)

DSAS:

Digital Shoreline Analysis System

ENSO:

El Niño Southern Oscillation

ESRI:

Environmental System Research Institute

GLS:

Geographical Information System

L7ETM:

Landsat Enhanced Thematic Mapper

LAC:

Latin American countries

MNDWI:

Modified Normalized Difference Water Index

Mts:

Meters

NSM:

Net Shoreline Movement

ONEMI:

Oficina Nacional de Emergencia del Ministerio del Interior y Seguridad Publica, Chile (National Emergency Office of the Ministry of Interior)

SCE:

Shoreline Change Envelope

SLR:

Sea level rise

SMN:

Servicio Meteorológico Nacional, Mexico (National Meteorological Service)

SSE:

Sea swell events

TPMC:

Technology Planning and Management Corporation

USGS:

United State Geological Survey

References

  • Álvarez-Gómez, J. A., Aniel-Quiroga, Í., Gutiérrez-Gutiérrez, O. Q., Larreynaga, J., González, M., Castro, M., Gavidia, F., Aguirre-Ayerbe, I., González-Riancho, P., & Carreño, E. (2013). Tsunami hazard assessment in El Salvador, Central America, from seismic sources through flooding numerical models. Natural Hazards and Earth System Sciences, 13(11), 2927–2939.

    Article  Google Scholar 

  • Becker, M., Karpytchev, M., & Papa, F. (2019). Hotspots of relative sea level rise in the tropics. Tropical Extremes: Natural Variability and Trends, 7, 203–262.

    Article  Google Scholar 

  • Brakenridge, G. R., Syvitski, J. P. M., Overeem, I., Higgins, S. A., Kettner, A. J., Stewart-Moore, J. A., & Westerhoff, R. (2013). Global mapping of storm surges and the assessment of coastal vulnerability. Natural Hazards, 66, 1295–1312.

    Article  Google Scholar 

  • de Farias, E. G. G., Lorenzzetti, J. A., & Chapron, B. (2012). Swell and wind-sea distributions over the mid-latitude and tropical North Atlantic for the period 2002–2008. International Journal of Ocean, 306723, 8.

    Google Scholar 

  • Delgado-Serrano, M. del M., Mistry, J., Matzdorf, B., & Leclerc, G. (2017). Community-based management of environmental challenges in Latin America and the Caribbean. Ecology and Society, 22(1). https://doi.org/10.5751/ES-08924-220104.

  • Dereli, M. A., & Tercan, E. (2020). Assessment of shoreline changes using historical satellite images and geospatial analysis along the Lake Salda in Turkey. Earth Science Informatics. https://doi.org/10.1007/s12145-020-00460-x.

  • Foody, G. M. (2000). Estimation of sub-pixel land cover composition in the presence of untrained classes. Computational Geosciences, 26(4), 469–478.

  • Halabisky, M., Moskal, L. M., Gillespie, A., & Hannam, M. (2016). Reconstructing semi-arid wetland surface water dynamics through spectral mixture analysis of a time series of Landsat satellite images (1984–2011). Remote Sensing of Environment, 177, 171–183.

    Article  Google Scholar 

  • Hamlington, B. D., Cheon, S. H., Thompson, P. R., Merrifield, M. A., Nerem, R. S., Leben, R. R., & Kim, K.-Y. (2016). An ongoing shift in Pacific Ocean sea level. Journal of Geophysical Research, Oceans, 121, 5084–5097.

    Article  Google Scholar 

  • Himmelstoss EA, Henderson RE, Kratzmann MG, Farris AS (2018) Digital Shoreline Analysis System (DSAS) version 5.0 user guide: U.S. Geological Survey Open-File Report 2018–1179: 110 p.

  • Hoeke, R. K., McInnes, K., Kruger, J., McNaught, R., Hunter, J., & Smithers, S. G. (2013). Widespread inundation of Pacific Islands by distant-source wind-waves. Global and Planetary Change, 108, 1–11.

    Article  Google Scholar 

  • Hu, S., & Fedorov, A. V. (2016). Exceptionally strong easterly wind burst stalling El Niño of 2014. Proceedings of the National Academy of Sciences, 113(8), 2005–2010.

    Article  CAS  Google Scholar 

  • Jeihouni, M., Kakroodi, A. A., & Hamzeh, S. (2019). Monitoring shallow coastal environment using Landsat/altimetry data under rapid sea-level change. Estuarine, Coastal and Shelf Science, 224, 260–271.

    Article  Google Scholar 

  • Jiang, H., & Chen, G. (2013). A global view on the swell and wind sea climate by the Jason-1 Mission. A Revisit. Journal of Atmospheric and Oceanic Technology, 30, 1833–1841.

    Article  Google Scholar 

  • Kelly, J. T., & Gontz, A. M. (2018). Using GPS-surveyed intertidal zones to determine the validity of shorelines automatically mapped by Landsat water indices. International Journal of Applied Earth Observation and Geoinformation, 65, 92–104.

    Article  Google Scholar 

  • Lyddon, C. E., Brown, J. M., Leonardi, N., & Plater, A. J. (2019). Increased coastal wave hazard generated by differential wind and wave direction in hyper-tidal estuaries. Estuarine, Coastal and Shelf Science, 220, 131–141.

    Article  Google Scholar 

  • Martin, J. A., Carreras, D., Pons, G. X., & Almaraz, A. (2020). Shoreline historical evolution (1956-2015) of beaches of enorca (Balearic Islands). In G. Malvarez & F. Navas (Eds.), Global coastal issues of 2020, J Coast Res (Vol. 95, pp. 563–567).

    Google Scholar 

  • Muis, S., Verlaan, M., Winsemius, H. C., Aerts, J. C. J. H., & Ward, P. J. (2016). A global reanalysis of storm surge and extreme sea levels. Nature Communications, 7(11969), 1–11.

    Google Scholar 

  • NOAA National Centers for Environmental Information, State of the Climate: Hurricanes and Tropical Storms for Annual 2015, published online January 2016, retrieved on May 16, 2019 from Https://Www.Ncdc.Noaa.Gov/Sotc/Tropical-Cyclones/201513.

  • Olthof, I., Fraser, R. H., & Schmitt, C. (2015). Landsat-based mapping of thermokarst lake dynamics on the Tuktoyaktuk Coastal Plain, Northwest Territories, Canada since 1985. Remote Sensing of Environment, 168, 194–204.

    Article  Google Scholar 

  • Páez-Osuna, F., Sanchez-Cabeza, J. A., Ruiz-Fernández, A. C., Alonso-Rodríguez, R., Piñón-Gimate, A., Cardoso-Mohedano, J. G., Flores-Verdugo, F. J., Carballo-Cenizo, J. L., Cisneros-Mata, M. A., & Álvarez-Borrego, S. (2016). Environmental status of the Gulf of California: a review of responses to climate change and climate variability. Earth-Science Reviews, 162, 253–268.

    Article  Google Scholar 

  • Palmer, K., Watson, C., & Fischer, A. (2019). Non-linear interactions between sea-level rise, tides, and geomorphic change in the Tamar Estuary, Australia. Estuarine, Coastal and Shelf Science, 225, 106247.

    Article  Google Scholar 

  • Reguero, B. G., Losada, I. J., Díaz-Simal, P., Méndez, F. J., & Beck, M. W. (2015). Effects of climate change on exposure to coastal flooding in Latin America and the Caribbean. PLoS One, 10, 1–19.

    Article  CAS  Google Scholar 

  • Rojas, O., Mardones, M., Rojas, C., Martínez, C., Flores, L., & Aguayo, M. (2017). Urban growth and flood disasters in the coastal river basin of South-Central Chile (1943-2011). Sustainability, 9(2), 195.

    Article  Google Scholar 

  • Scott, A. S., & Ramsay, D. L. (2014). Extreme cyclone wave climate in the Southwest Pacific Ocean: influence of the El Niño Southern Oscillation and projected climate change. Global and Planetary Change, 123(A), 13–26.

    Google Scholar 

  • Sheik, M., & Chandrasekar. (2011). A shoreline change analysis along the coast between Kanyakumari and Tuticorin, India, using digital shoreline analysis system. Geo-spatial Information Science, 14(4), 282–293.

    Article  Google Scholar 

  • Sweet, W. V., Park, J., Gill, S., & Marra, J. (2015). New ways to measure waves and their effects at NOAA tide gauges: a Hawaiian -network perspective. Geophysical Research Letters, 42, 9355–9361.

    Article  Google Scholar 

  • Vitousek, S., Barnard, P. L., Fletcher, C. H., Frazer, N., Erikson, L., & Storlazzi, C. D. (2017). Doubling of coastal flooding frequency within decades due to sea-level rise. Scientific Reports, 7, 1–9.

    Article  CAS  Google Scholar 

  • Wang, X., Liu, Y., Ling, F., & Xu, S. (2018). Fine spatial resolution coastline extraction from Landsat-8 OLI imagery by integrating downscaling and pan sharpening approaches. Remote Sensing Letters, 9(4), 314–323.

    Article  Google Scholar 

  • Wdowinski, S., Bray, R., Kirtman, B., & Wu, Z. (2016). Increasing flooding hazard in coastal communities due to rising sea level: case study of Miami Beach, Florida. Ocean and Coastal Management, 126, 1–8.

    Article  Google Scholar 

  • Wong PP, Losada IJ, Gattuso JP, Hinkel J, Khattabi A, McInnes KL, Saito Y, Sallenger A, Cheong SM, Dow K, Duarte CM, Ebi KL, Faulkner L, Isobe M, Middel-burg J, Moser S, Pelling M, Penning-Rowsell E, Seitzinger S, Stive M, Tol RSJ, Vafeidis A (2014) Coastal systems and low-lying areas, climate change 2014: impacts, adaptation and vulnerability. In Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TB, Chatterjee M, Ebi KL, Estrada YO, Gen-ova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds). Global and sectoral aspects: working group contribution to the fifth assessment report of the inter-governmental panel on climate change. Cambridge, UK and New York, USA. 361–409.

  • Xavier, C.-C., Cecilia, E., Vanesa, P., Ismael, M.-T., & Cristóbal, R.-H. (2019). Pacific coast of Mexico. World Seas: an Environmental Evaluation, 28, 655–671.

    Google Scholar 

  • Yu, L., Wu, X., Zheng, X., Zheng, T., Xin, J., & Walther, M. (2019). An index system constructed for ecological stress assessment of the coastal zone: a case study of Shandong, China. Journal of Environmental Management, 232, 499–504.

    Article  Google Scholar 

  • Zuniga, E., & Magaña, V. (2018). Vulnerability and risk to intense rainfall in Mexico: the effect of land use cover change. Investment Geo, 95.

Download references

Acknowledgments

MPJ thank the Sistema Nacional de Investigadores (SNI), CONACyT, Mexico. PGP and FRH thank CONACyT for the research fellowship. Thanks to Dr. V.C. Shruti for her initial idea in this work. This article is the 110th contribution (partial) from the Earth System Science Group (ESSG), Chennai, India (participating members: PGP, JMP, GM, CL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Jonathan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Video 1

Video clipping of inundation limits in Oaxaca and Guerrero (MP4 10161kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godwyn-Paulson, P., Jonathan, M.P., Hernandez, F.R. et al. Coastline variability of several Latin American cities alongside Pacific Ocean due to the unusual “Sea Swell” events of 2015. Environ Monit Assess 192, 522 (2020). https://doi.org/10.1007/s10661-020-08469-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08469-x

Keywords

Navigation