Skip to main content
Log in

Polynomial Approximation of Anisotropic Analytic Functions of Several Variables

  • Published:
Constructive Approximation Aims and scope

Abstract

Motivated by numerical methods for solving parametric partial differential equations, this paper studies the approximation of multivariate analytic functions by algebraic polynomials. We introduce various anisotropic model classes based on Taylor expansions, and study their approximation by finite dimensional polynomial spaces \({{\mathcal {P}}}_\Lambda \) described by lower sets \(\Lambda \). Given a budget n for the dimension of \({{\mathcal {P}}}_\Lambda \), we prove that certain lower sets \(\Lambda _n\), with cardinality n, provide a certifiable approximation error that is in a certain sense optimal, and that these lower sets have a simple definition in terms of simplices. Our main goal is to obtain approximation results when the number of variables d is large and even infinite, and so we concentrate almost exclusively on the case \(d=\infty \). We also emphasize obtaining results which hold for the full range \(n\ge 1\), rather than asymptotic results that only hold for n sufficiently large. In applications, one typically wants n small to comply with computational budgets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bachmayr, M., Cohen, A., Migliorati, G.: Sparse polynomial approximation of parametric elliptic PDEs. Part I: affine coefficients. ESAIM: Math. Modell. Numer. Anal. 51(1), 321–339 (2017)

    Article  MathSciNet  Google Scholar 

  2. Beck, J., Nobile, F., Tamellini, L., Tempone, R.: On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods. Math. Models Methods Appl. Sci. 22(9), 1250023 (2012)

    Article  MathSciNet  Google Scholar 

  3. Beck, J., Nobile, F., Tamellini, L., Tempone, R.: Convergence of quasi-optimal Stochastic Galerkin methods for a class of PDES with random coefficients. Comput. Math. Appl. 67(4), 732–751 (2014)

    Article  MathSciNet  Google Scholar 

  4. Beged-Dov, A.: Lower and upper bounds for the number of lattice points in a simplex. SIAM J. Appl. Math. 22(1), 106–108 (1972)

    Article  MathSciNet  Google Scholar 

  5. Bieri, M., Andreev, R., Schwab, C.: Sparse tensor discretizations of elliptic SPDEs. SIAM J. Sci. Comput. 31(6), 4281–4304 (2009)

    Article  MathSciNet  Google Scholar 

  6. Binev, P., Dahmen, W., DeVore, R.: Adaptive finite element methods with convergence rates. Numerische Mathematik 97(2), 219–268 (2004)

    Article  MathSciNet  Google Scholar 

  7. Binev, P., Dahmen, W., DeVore, R., Petrushev, P.: Approximation classes for adaptive methods. Serdica Math. J. 28(4), 391–416 (2002)

    MathSciNet  MATH  Google Scholar 

  8. Bonito, A., DeVore, R., Nochetto, R.: Adaptive finite element methods for elliptic problems with discontinuous coefficients. SIAM J. Numer. Anal. 51(6), 3106–3134 (2013)

    Article  MathSciNet  Google Scholar 

  9. Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods, vol. 15. Springer, Berlin (2007)

    Google Scholar 

  10. Canfield, E., Erdös, P., Pomerance, C.: On a problem of Oppenheim concerning “factorisatio numerorum”. J. Number Theory 17(1), 1–28 (1983)

    Article  MathSciNet  Google Scholar 

  11. Chkifa, A., Cohen, A., DeVore, R., Schwab, C.: Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs. ESAIM: Math. Modell. Numer. Anal. 47(1), 253–280 (2013)

    Article  MathSciNet  Google Scholar 

  12. Chkifa, A., Cohen, A., Schwab, C.: Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs. J. Math. Pures Appl. 9(2), 400–428 (2015)

    Article  MathSciNet  Google Scholar 

  13. Cohen, A., DeVore, R.: Approximation of high-dimensional parametric PDEs. Acta Numer. 24, 1–159 (2015)

    Article  MathSciNet  Google Scholar 

  14. Cohen, A., DeVore, R., Schwab, C.: Analytic regularity and polynomial approximation of parametric stochastic elliptic PDEs. Anal. Appl. 9(1), 11–47 (2011)

    Article  MathSciNet  Google Scholar 

  15. Cohen, A., Migliorati, G.: Multivariate approximation in downward closed polynomial spaces. In: Contemporary Computational Mathematics—A Celebration of the 80th Birthday of Ian Sloan, Vols 1 and 2, pp. 233–282. Springer, Cham (2018)

    Chapter  Google Scholar 

  16. de Azevedo Pribitkin, W.: Simple upper bounds for partition functions. Ramanujan J. 18(1), 113–119 (2009)

    Article  MathSciNet  Google Scholar 

  17. Griebel, M., Oettershagen, J.: On tensor product approximation of analytic functions. J. Approx. Theory 207, 348–379 (2016)

    Article  MathSciNet  Google Scholar 

  18. Luca, F., Mukhopadhyay, A., Srinivas, K.: Some results on Oppenheim’s “Factorisatio Numerorum” function. Acta Arithmetica 142, 41–50 (2010)

    Article  MathSciNet  Google Scholar 

  19. Riordan, J.: An Introduction to Combinatorial Analysis. Princeton University Press, Princeton (1978)

    MATH  Google Scholar 

  20. Tran, H., Webster, C., Zhang, G.: Analysis of quasi-optimal polynomial approximations for parameterized PDEs with deterministic and stochastic coefficients. Numer. Math. 137(2), 451–493 (2017)

    Article  MathSciNet  Google Scholar 

  21. Yau, S., Zhang, L.: An upper estimate of integral points in real simplices with an application to singularity theory. Math. Res. Lett. 13(5), 911–921 (2006)

    Article  MathSciNet  Google Scholar 

  22. Zech, J.: Sparse-grid approximation of high-dimensional parametric PDEs. PhD Thesis, 25683: ETH Zürich (2018) https://doi.org/10.3929/ethz-b-000340651

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Jantsch.

Additional information

Communicated by Albert Cohen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by the NSF Grants DMS-1817691 (AB), DMS 15-21067 (RD-GP), DMS 18-17603 (RD-GP), ONR Grants N00014-17-1-2908 (RD), N00014-16-1-2706 (RD); DG was supported by the Swiss National Science Foundation Grant P2ELP2-175056 and IAMCS at TAMU, and PJ was supported by an NSF Fellowship DMS-1704121. A portion of this research was completed while RD (Simon Fellow), DG, and PJ were supported as visitors of the Isaac Newton Institute at Cambridge University.

Appendix: Proofs of Corollaries 5.6 and 5.7

Appendix: Proofs of Corollaries 5.6 and 5.7

Proof of Corollary 5.6:

Let \(m=m(n)\) be the largest natural number satisfying (5.14). One can check that for \(n\ge 2^{16}\), we have \(m(n)\ge 6\), and thus it follows from (ii) of Lemma 5.3 that

$$\begin{aligned} \#\Lambda (2^{-m(n)},\rho ^*(1)) \le Cm(n)^{-3/4}2^{m(n)+c\sqrt{m(n)}}\le n, \end{aligned}$$

which gives \(\delta _n(\rho ^*(s)) \le 2^{-m(n)s}\), and thus \(E_n({{\mathcal {U}}}_{\rho ^*(s),1}) \le 2^{-m(n)s}\). \(\square \)

Proof of Corollary 5.7:

To show (5.15), we proceed as follows. We consider first the case \(n=2^k\), \(k\ge 16\). Let m be the largest non-negative natural number satisfying

$$\begin{aligned} m+c\sqrt{m}\le k, \end{aligned}$$

and let \(\beta \) be defined by the equation \(m=k-\beta \sqrt{k}\). Since \(k\ge 16\), the largest m that satisfies the above estimate is greater or equal to 6. Moreover, we can easily show that \(\beta \le c\). Therefore, we use the fact that \(m=k-\beta \sqrt{k}\ge k-c\sqrt{k}\) and that \(k-c\sqrt{k}\ge (1-c/4) k\) for \(k\ge 16\), which gives

$$\begin{aligned} \log _2 m\ge \log _2 (1-c/4) +\log _2 k. \end{aligned}$$

Thus if \(C_1:=\log _2 C\), we have

$$\begin{aligned} C_1 -\frac{3}{4}\log _2 m+m+c\sqrt{m}\le C_2-\frac{3}{4}\log _2k +k, \quad C_2:=C_1 -\frac{3}{4}\log _2 (1-c/4). \end{aligned}$$

It follows (since \(m\ge 6\)) that

$$\begin{aligned} \#(\Lambda (2^{-m},\rho ^*(1)))\le Cm^{-3/4}2^{m+c\sqrt{m}}\le {\tilde{C}}k^{-3/4}2^k ={\tilde{C}}\frac{n}{[\log _2 n]^{3/4}}, \quad {\tilde{C}}:=C(1-c/4)^{-3/4}>1. \end{aligned}$$

Therefore, (5.7) and the monotonicity of the sequence \((\delta _n(\rho ^*(s)))_{n\ge 1}\) give

$$\begin{aligned} \delta _{\left\lceil {\tilde{C}}\frac{n}{[\log _2 n]^{3/4}}\right\rceil }(\rho ^*(s))\le 2^{-ms}\le n^{-s}n^{\frac{c s}{\sqrt{\log _2 n}} },\quad n= 2^{k}, \quad k\ge 16, \end{aligned}$$

which, according to Remark 5.2, leads to

$$\begin{aligned} E_{\left\lceil {\tilde{C}}\frac{n}{[\log _2 n]^{3/4}}\right\rceil }({{\mathcal {U}}}_{\rho ^*(s),1})\le n^{-s}n^{\frac{c s}{\sqrt{\log _2 n}} }. \end{aligned}$$

Now, if \(k\ge 16\) is such that \(2^k\le n<2^{k+1}\), it follows that

$$\begin{aligned} E_{\left\lceil {\tilde{C}}\frac{n}{[\log _2 n]^{3/4}}\right\rceil }({{\mathcal {U}}}_{\rho ^*(s),1})\le E_{\left\lceil {\tilde{C}}\frac{2^k}{k^{3/4}}\right\rceil }({{\mathcal {U}}}_{\rho ^*(s),1})\le 2^{-ks } 2^{cs \sqrt{k} }\le 2^sn^{-s} (2^{\log _2 n})^{\frac{c{ s}}{\sqrt{\log _2 n}}} { =} 2^sn^{-s} n^{\frac{cs}{\sqrt{\log _2 n}}}, \end{aligned}$$

which is (5.15). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonito, A., DeVore, R., Guignard, D. et al. Polynomial Approximation of Anisotropic Analytic Functions of Several Variables. Constr Approx 53, 319–348 (2021). https://doi.org/10.1007/s00365-020-09511-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-020-09511-4

Keywords

Mathematics Subject Classification

Navigation