Skip to main content
Log in

Scaling and Entropy for the RG-2 Flow

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let (Mg) be a closed Riemannian manifold. The RG-2 flow is defined by

$$\begin{aligned} \frac{\partial }{\partial t} \, g(t) \, =\, -2 \mathrm {Ric}(t) \, -\, \frac{\alpha }{2} \mathrm {Rm}^2(t), \end{aligned}$$

where \( g = \mathrm {Riemannian \ metric}, \mathrm {Ric} = \mathrm {Ricci \ curvature, } \ \mathrm {Rm}^2_{ij}:=\mathrm {R}_{irmk}\mathrm {R}_j^{rmk},\) and \(\alpha \ge 0\) is a parameter. This is the geometric flow associated with the second-order approximation to the perturbative renormalization group flow for the nonlinear sigma model. It is invariant under diffeomorphisms, but not under scaling of the metric, the latter of which gives rise to several delicate problems from the point of view of geometric analysis. To address the lack of scaling we introduce a geometrically defined coupling constant \(\alpha _g\) that leads to an equivalent, scale-invariant flow. We further find a modified Perelman entropy for the flow, and prove local existence of the resulting variational system. The crucial idea is to modify the flow by two diffeomorphisms, the first being the usual DeTurck diffeomorphism and the second being strictly related to the geometrical characterization of the coupling constant \(\alpha _g\). We minimize the entropy functional so introduced to characterize a natural extension \(\Lambda [g]\) of the Perelman’s \(\lambda (g)\)–functional, and show that \(\Lambda [g]\) is monotonic under the RG-2 flow. Although the modified Perelman entropy is monotonic, the RG-2 flow is not a gradient flow with respect this functional. We discuss this issue in detail, showing how to deform the functional in order to give rise to a gradient flow for a DeTurck modified RG-2 flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. We wish to thank the referee for pointing such alternative strategy out to us.

  2. As usual, in what follows we adopt the convention that \(\nabla \), when acting on a time–dependent vector or tensor field, denotes the covariant derivative with respect to (Mg(t)).

  3. At any given instant t; when working at fixed time t we drop the explicit time dependence in what follows.

  4. See,e.g. [7] Lemma 5.22 for the analogous case of Perelman’s \(\lambda (g)\) functional.

References

  1. Andrews, B., Ni, L.: Eigenvalue comparison on BakryEmery manifolds. Commun. Partial Differ. Equ. 37, 2081–2092 (2012)

    Article  Google Scholar 

  2. Branding, V.: The normalized second order renormalization group flow on closed surfaces. Adv. Theor. Math. Phys. 20, 1167–1191 (2016)

    Article  MathSciNet  Google Scholar 

  3. Cantor, M.: Elliptic operators and the decomposition of tensor fields. Bull. Am. Math. Soc. (N.S.) 5(3), 235–262 (1981)

    Article  MathSciNet  Google Scholar 

  4. Carfora, M., Dappiaggi, C., Drago, N., et al.: Ricci flow from the renormalization of nonlinear sigma models in the framework of Euclidean algebraic quantum field theory. Commun. Math. Phys. (2019). https://doi.org/10.1007/s00220-019-03508-2

    Article  MATH  Google Scholar 

  5. Carfora, M.: The Wasserstein geometry of nonlinear \(\sigma \) models and the Hamilton–Perelman Ricci flow. Rev. Math. Phys. 29, 1750001–72 (2017)

    Article  MathSciNet  Google Scholar 

  6. Chen, B.-L., Zhu, X.-P.: Uniqueness of the Ricci flow on complete noncompact manifolds. J. Differ. Geometry 74, 119–154 (2006)

    Article  MathSciNet  Google Scholar 

  7. Chow, B., Chu, S-C., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F., Ni, L.: The Ricci flow: thechniques and applications,: geometric aspects. Math. Surv. Monographs 135, AMS (2007)

  8. Chow, B., Chu, S-C., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F., Ni, L.: The Ricci flow: techniques and applications,: geometric-analytic aspects. Math. Surv. Monographs 163, AMS (2010)

  9. Chow, B., Knopf, D.: The Ricci flow: an introduction. Math. Surv. Monographs 110, AMS (2004)

  10. Colbois, B., Soufi, A.E., Savio, A.: Eigenvalues of the Laplacian on a compact manifold with density. Commun. Anal. Geometry 23(3), 639–670 (2015)

    Article  MathSciNet  Google Scholar 

  11. Cremaschi, L., Mantegazza,C.: Short-time existence of the second order renormalization group flow in dimension three. arXiv:1306.1721v1 [math.AP] (2013)

  12. Friedan, D.: Nonlinear models in \(2+\epsilon \) dimensions. Ann. Phys. 163, 318–419 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  13. Futaki, A., Sano, Y.: Lower diameter bounds for compact shrinking Ricci solitons. Asian J. Math. 17, 17–32 (2013)

    Article  MathSciNet  Google Scholar 

  14. Futaki, A., Li, H., Li, X.-D.: On the first eigenvalue of the Witten-Laplacian and the diameter of compact shrinking Ricci solitons. Ann. Global Anal. Geom. 44, 105–114 (2013)

    Article  MathSciNet  Google Scholar 

  15. Guenther, C.: Second-order renormalization group flow. In: Barrett Lectures Conference Proceedings, UTK (2018)

  16. Gawedzki, K.: Conformal field theory. In: Deligne, P., Etingof, P., Freed, D.D., Jeffrey, L.C., Kazhdan, D., Morgan, J.W., Morrison, D.R., Witten, E. (eds.) Quantum Fields and Strings: A course for Mathematicians, Vol. 2, AMS, Ist. For Adv. Studies (1999)

  17. Gimre, K., Guenther, C., Isenberg, J.: Second-order renormalization group flow of three-dimensional homogeneous geometries. Commun. Anal. Geometry 21(2), 435–467 (2013). arXiv:1205.6507v1 [math.DG]

    Article  MathSciNet  Google Scholar 

  18. Gimre, K., Guenther, C., Isenberg, J.: Short-time existence for the second order renormalization group flow in general dimensions. Proc. Am. Math. Soc. 143(10), 4397–4401 (2015)

    Article  MathSciNet  Google Scholar 

  19. Gimre, K., Guenther, C., Isenberg, J.: A geometric introduction to the 2-loop renormalization group flow. J. Fixed Point Theory Appl. 14, 3–20 (2013)

    Article  MathSciNet  Google Scholar 

  20. Guenther, C., Oliynyk, T.: Stability of the (Two-Loop) renormalization group flow for nonlinear sigma models. Lett. Math. Phys. 84, 149–157 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  21. Grigor’yan, A.: Heat kernels on weighted manifolds and applications. In: The Ubiquitous Heat Kernel, Contemp. Math., 398, Am. Math. Soc., Providence, RI, pp. 93–191 (2006)

  22. Gromov, M.: Metric structures for Riemannian and non-Riemannian spaces. Progress in Math., 152, Birkhäuser, Boston (1999)

  23. Hamilton, R.: The Ricci flow on surfaces. In: Mathematics and General Relativity. Santa Cruz, CA, 1986, Contemporary Mathematics, 71, American Mathematical Society, Providence, RI, pp. 237–262 (1988)

  24. Lott, J.: Some geometric calculations on Wasserstein space. Commun. Math. Phys. 277, 423–437 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  25. Moser, J.: On the volume elements on a manifold. Trans. Am. Math. Soc. 120, 286–294 (1965)

    Article  MathSciNet  Google Scholar 

  26. Oliynyk, T.: The second-order renormalization group flow for nonlinear sigma models in two dimensions Class. Quant. Grav. 26, (2009)

  27. Oliynyk, T., Suneeta, V., Woolgar, E.: Metric for gradient renormalization group flow of the worldsheet sigma model beyond first order. Phys. Rev. D 76, 045001 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  28. Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 23, 101–174 (2001)

    Article  MathSciNet  Google Scholar 

  29. Otto, F., Villani, C.: Generalization of an inequality by Talagrand, and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173(2), 361–400 (2000)

    Article  MathSciNet  Google Scholar 

  30. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv:math/0211159 [math.DG] (2002)

  31. Shi, W.X.: Deforming the meric on complete Riemannian manifold. J. Differ. Geometry 30, 223–301 (1989)

    Article  Google Scholar 

  32. Tseytlin, A.A.: On sigma model RG flow, "central charge" action and Perelman’s entropy. Phys. Rev. D 75, 064024 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  33. Zamolodchikov, A.B.: Irreversibility of the Flux of the renormalization group in a 2D field theory. JETP Lett. 43, 730–732 (1986)

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Carfora.

Additional information

Communicated by P. Chrusciel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported under a GNFM visiting professorship grant and Simons Foundation Collaboration Grant 283083.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carfora, M., Guenther, C. Scaling and Entropy for the RG-2 Flow. Commun. Math. Phys. 378, 369–399 (2020). https://doi.org/10.1007/s00220-020-03778-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03778-1

Navigation