Skip to main content
Log in

Spectrum of the Lamé Operator and Application, II: When an Endpoint is a Cusp

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This article is the second part of our study of the spectrum \(\sigma (L_n;\tau )\) of the Lamé operator

$$\begin{aligned} L_n=\frac{d^2}{dx^2}-n(n+1)\wp ( x+z_0;\tau )\quad \text {in}\;\;L^2(\mathbb {R}, \mathbb {C}), \end{aligned}$$

where \(n\in \mathbb {N}\), \(\wp (z;\tau )\) is the Weierstrass elliptic function with periods 1 and \(\tau \), and \(z_0\in \mathbb {C}\) is chosen such that \(L_n\) has no singularities on \(\mathbb {R}\). An endpoint of \(\sigma (L_n;\tau )\) is called a cusp if it is an intersection point of at least three semi-arcs of \(\sigma (L_n;\tau )\). We obtain a necessary and sufficient condition for the existence of cusps in terms of monodromy datas and prove that \(\sigma (L_n;\tau )\) has at most one cusp for fixed \(\tau \). We also consider the case \(n=2\) and study the distribution of \(\tau \)’s such that \(\sigma (L_2;\tau )\) has a cusp. For any \(\gamma \in \Gamma _{0}(2)\) and the fundamental domain \(\gamma (F_0)\), where \(F_{0}:=\{ \tau \in \mathbb {H} |\ 0\leqslant {\text {Re}} \tau \leqslant 1, |z-\frac{1}{2}|\geqslant \frac{1}{2}\}\) is the basic fundamental domain of \(\Gamma _0(2)\), we prove that there are either 0 or 3 \(\tau \)’s in \(\gamma (F_0)\) such that \(\sigma (L_2;\tau )\) has a cusp and also completely characterize those \(\gamma \)’s. To prove such results, we will give a complete description of the critical points of the classical modular forms \(e_1(\tau ), e_2(\tau ), e_3(\tau )\), which is of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Of course, the standard definition of \(F_0\) should be \(F_0=\{ \tau \in \mathbb {H}\ |\ 0\leqslant \ \text {Re}\ \tau < 1\ \text {and}\ |z-\tfrac{1}{2}|\geqslant \tfrac{1}{2}\}{\setminus }\{\tau |\text {Re}\tau >\frac{1}{2}, |z-\frac{1}{2}|=\frac{1}{2}\}\). But it is more convenient for us to use the definition (1.14) in this article.

References

  1. Akhieser, N.: Elements of the Theory of Elliptic Functions. American Mathematical Society, Providence (1990)

    Book  Google Scholar 

  2. Batchenko, V., Gesztesy, F.: On the spectrum of Schrödinger operators with quasi-periodic algebro-geometric KdV potentials. J. Anal. Math. 95, 333–387 (2005)

    Article  MathSciNet  Google Scholar 

  3. Birnir, B.: Complex Hill’s equation and the complex periodic Korteweg-de Vries equations. Commun. Pure Appl. Math. 39, 1–49 (1986)

    Article  MathSciNet  Google Scholar 

  4. Balasubramanian, R., Gun, S.: On zeros of quasi-modular forms. J. Number theory 132, 2228–2241 (2012)

    Article  MathSciNet  Google Scholar 

  5. Brezhnev, Y.V.: Non-canonical extension of \(\vartheta \)-functions and modular integrability of \(\vartheta \)-constants. Proc. R. Soc. Edinb. Sect. A 143(4), 689–738 (2013)

    Article  MathSciNet  Google Scholar 

  6. Burchnall, J., Chaundy, T.: Commutative ordinary differential operators. Proc. Lond. Math. Soc. 21, 420–440 (1923)

    Article  MathSciNet  Google Scholar 

  7. Chai, C.L., Lin, C.S., Wang, C.L.: Mean field equations, hyperelliptic curves, and modular forms: I. Camb. J. Math. 3, 127–274 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  8. Chen, Z., Fu, E., Lin, C.S.: Spectrum of the Lamé operator and application, I: deformation along \(\operatorname{Re}\tau =\frac{1}{2}\). Submitted

  9. Chen, Z., Kuo, T.J., Lin, C.S.: Simple zero property of some holomorphic functions on the moduli space of tori. Sci. China Math. 62, 2089–2102 (2019)

    Article  MathSciNet  Google Scholar 

  10. Chen, Z., Kuo, T.J., Lin, C.S., Wang, C.L.: Green function, Painlevé VI equation and Eisenstein series of weight one. J. Differ. Geom. 108, 185–241 (2018)

    Article  Google Scholar 

  11. Chen, Z., Lin, C.S.: Critical points of the classical Eisenstein series of weight two. J. Differ. Geom. 113, 189–226 (2019)

    Article  MathSciNet  Google Scholar 

  12. Chen, Z., Lin, C.S.: On algebraic multiplicity of (anti)periodic eigenvalues of Hill’s equations. Proc. Am. Math. Soc. 146, 3039–3047 (2018)

    Article  MathSciNet  Google Scholar 

  13. Chen, Z., Lin, C.S.: Exact number and non-degeneracy of critical points of multiple Green functions on rectangular tori. J. Differ. Geom. to appear. Mathscidoc: 1906.03004

  14. Dahmen, S.: Counting integral Lamé equations with finite monodromy by means of modular forms. Master Thesis, Utrecht University (2003)

  15. Eremenko, A.: Metrics of constant positive curvature with four conic singularities on the sphere. Preprint (2019)

  16. Eremenko, A., Gabrielov, A.: Spherical rectangles. Arnold Math. J. 2, 463–486 (2016)

    Article  MathSciNet  Google Scholar 

  17. Gesztesy, F., Weikard, R.: Picard potentials and Hill’s equation on a torus. Acta Math. 176, 73–107 (1996)

    Article  MathSciNet  Google Scholar 

  18. Gesztesy, F., Weikard, R.: Lamé potentials and the stationary (m)KdV hierarchy. Math. Nachr. 176, 73–91 (1995)

    Article  MathSciNet  Google Scholar 

  19. Gesztesy, F., Weikard, R.: Floquet Theory Revisited. Differential Equations and Mathematical Physics, pp. 67–84. Int. Press, Boston (1995)

    MATH  Google Scholar 

  20. Haese-Hill, W., Hallnäs, M., Veselov, A.: tOn the spectra of real and complex Lamé operators. Symmetry Integr. Geom. Methods Appl. SIGMA 13, 49 (2017)

    MATH  Google Scholar 

  21. Hecke, E.: Zur Theorie der elliptischen Modulfunctionen. Math. Ann. 97, 210–242 (1926)

    Article  Google Scholar 

  22. Ince, E.L.: Further investigations into the periodic Lamé equations. Proc. R. Soc. Edinb. 60, 83–99 (1940)

    Article  Google Scholar 

  23. Kaneko, M., Zagier, D.: A generalized Jacobi theta function and quasimodular forms. In: The Moduli Space of Curves. Progr. Math., vol. 129, Boston, MA, pp. 165–172 (1995)

  24. Lang, S.: Elliptic Functions. Graduate Text in Mathematics, vol. 112. Springer, Berlin (1987)

    Book  Google Scholar 

  25. Lin, C.S., Wang, C.L.: Elliptic functions, Green functions and the mean field equations on tori. Ann. Math. 172(2), 911–954 (2010)

    Article  MathSciNet  Google Scholar 

  26. Lin, C.S., Wang, C.L.: Mean field equations, hyperelliptic curves, and modular forms: II. J. Éc. Polytech. Math. 4, 557–593 (2017)

    Article  MathSciNet  Google Scholar 

  27. Lin, C.S., Wang, C.L.: Geometric quantities arising from bubbling analysis of mean field equations. Comm. Anal. Geom. to appear. arXiv:1609.07204v1

  28. Maier, R.: Lamé polynomail, hyperelliptic reductions and Lamé band structure. Philos. Trans. R. Soc. A 366, 1115–1153 (2008)

    Article  ADS  Google Scholar 

  29. Mckean, H., Moll, V.: Elliptic Curves. Function Theory, Geometry, Arithmetic. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  30. Rofe-Beketov, F.: The spectrum of non-selfadjoint differential operators with periodic coeffients. Sov. Math. Dokl. 4, 1563–1566 (1963)

    MATH  Google Scholar 

  31. Saber, H., Sebbar, A.: On the critical points of modular forms. J. Number Theory 132, 1780–1787 (2012)

    Article  MathSciNet  Google Scholar 

  32. Shimura, G.: Elementary Dirichlet Series and Modular Forms. Springer, Berlin (2007)

    Book  Google Scholar 

  33. Takemura, K.: Analytic continuation of eigenvalues of the Lamé operator. J. Differ. Equ. 228, 1–16 (2006)

    Article  ADS  Google Scholar 

  34. Weikard, R.: On Hill’s equation with a singular complex-valued potential. Proc. Lond. Math. Soc. 76, 603–633 (1998)

    Article  MathSciNet  Google Scholar 

  35. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis, 4th edn. Cambridge University Press, Cambridge (1927)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referees for many valuable comments. The authors thank Chin-Lung Wang very much for providing the file of Fig. 2 to us. The research of Z. Chen was supported by NSFC (Grant No. 11701312, 11871123) and Tsinghua University Initiative Scientific Research Program (No. 2019Z07L02016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijie Chen.

Additional information

Communicated by H. T. Yau.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Lin, CS. Spectrum of the Lamé Operator and Application, II: When an Endpoint is a Cusp. Commun. Math. Phys. 378, 335–368 (2020). https://doi.org/10.1007/s00220-020-03818-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03818-w

Navigation