Skip to main content
Log in

Numerical Investigation on the Deformational Behavior of Continuous Buried Pipelines Under Reverse Faulting

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Steel pipelines are vulnerable to the movements of active faults. Few studies focused on reverse faults. The deformational behavior of buried steel pipelines crossing an active reverse fault is investigated in this paper by applying 3D continuum finite element modeling. Numerical simulations indicate that local buckling (or wrinkling) mode of failure is more sensitive to the pipeline rather than tensile failure mode. The results were also confirmed by the experiment. Based on parametric studies, the pipeline capacity against failure can be significantly improved by reducing the burial depth and the pipe thickness ratio. Besides, the soil consistency around the pipe has a great effect on the behavior of buried pipelines. Furthermore, it is found out that the failed pipeline sections would be generated in longer distance from the fault plane as the soil behaves more softly or the pipeline is more flexible. These findings can lead the designers to have a safer and economic design of pipelines crossing reverse faulting zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

c :

Soil cohesion

C c :

Coefficient of curvature

C u :

Coefficient of uniformity

D :

Pipe diameter

D 50 :

The average particle size of soil

E :

Soil elastic Young’s modulus

E 1 :

Elastic Young’s modulus of pipe

E 2 :

Plastic Young’s modulus of pipe

E i :

Initial Young’s modulus of pipe in the Ramberg–Osgood stress–strain equation

f :

Friction factor

G s :

Specific gravity

H :

Burial depth of the pipeline

n :

Ramberg–Osgood parameter

R :

Pipe radius

r :

Ramberg–Osgood parameter

t :

Pipe wall thickness

β :

Fault dip angle

δ :

Interface angle of friction for pipe and soil

γ :

Total unit weight of soil

γ d :

Dry unit weight of soil

ε 1 :

Initial yield strain of pipeline

ε 2 :

Failure strain of pipeline

ɛ c :

Compressive strain

ɛ t :

Tensile strain

ɛ u :

Ultimate strain

ε a :

Axial strain

µ :

Coefficient of friction

ν :

Poisson’s ratio

σ 0 :

Effective yield stress

σ 1 :

Initial yield stress of pipeline

σ 2 :

Failure stress of pipeline

σ a :

Maximum axial stress

ϕ :

Internal friction angle of soil

ψ :

Dilation angle of soil

References

  1. Ariman, T.; Muleski, G.E.: A review of the response of buried pipelines under seismic excitations. Earthq. Eng. Struct. Dyn. 9, 133–152 (1981)

    Article  Google Scholar 

  2. Katayama, T.; Isoyama, R.: Damage to Buried Distribution Pipelines During the Miyagiken-Oki Earthquake. In: Proceedings of Recent Advances in Lifeline Earthquake Engineering in Japan, ASME California, pp. 97–104, (1980)

  3. Kitaura, M.; Miyajima, M.: Damage to water supply pipelines. Soils Found. 36, 325–333 (1996)

    Article  Google Scholar 

  4. Liang, J.; Sun, S.: Site effects on seismic behavior of pipelines: a review. J. Press. Vessel Technol. 122, 469–475 (2000)

    Article  Google Scholar 

  5. O’Rourke, M.J.; Ayala, G.: Seismic damage to pipeline: case study. J. Transp. Eng. 116, 123–134 (1990)

    Article  Google Scholar 

  6. Ariman, T.: Buckling and rupture failure in pipelines due to large ground deformations. In: Wind and Seismic Effects: Proceedings of the 14th Joint Panel Conference of the US-Japan Cooperative Program in Natural Resources, US Dept. of Commerce, National Bureau of Standards,, pp. 259. (1983)

  7. McCaffrey, M.; O’Rourke, T.: Buried pipeline response to reverse faulting during the 1971 San Fernando Earthquake. ASME Press. Vessels Pip. 77(1983), 151–159 (1971)

    Google Scholar 

  8. Moradi, M.; Rojhani, M.; Galandarzadeh, A.; Takada, S.: Centrifuge modeling of buried continuous pipelines subjected to normal faulting. Earthq. Eng. Eng. Vib. 12, 155–164 (2013)

    Article  Google Scholar 

  9. O’Rourke, M.J.; Liu, X.: Response of buried pipelines subject to earthquake effects, MonographSeries, Multidisciplinary Center for Earthquake Engineering Research (MCEER) (1999)

  10. Rojhani, M.; Moradi, M.; Galandarzadeh, A.; Takada, S.: Centrifuge modeling of buried continuous pipelines subjected to reverse faulting. Can. Geotech. J. 49, 659–670 (2012)

    Article  Google Scholar 

  11. Sun, S.: Earthquake damage to pipelines. In: Proceedings of 2nd U. S. National Conference on Earthquake Engineering, EERI, Stanford, pp. 61–67 (1979)

  12. Towhata, I.: Geotechnical Earthquake Engineering. Springer, Berlin (2008)

    Book  Google Scholar 

  13. Newmark, N.M.; Hall, W.J.: Pipeline Design to Resist Large Fault Displacement. In: Proceedings of U.S. National Conference on Earthquake Engineering, pp. 416–425. (1975)

  14. Kennedy, R.; Chow, A.; Williamson, R.: Fault movement effects on buried oil pipeline. Transp. Eng. J. ASCE 103(TE5), 617–633 (1977)

    Google Scholar 

  15. ASCE, Guidelines for the seismic design of oil and gas pipeline systems, committee on gas and liquid fuel lifelines, pp. 150–228. (1984)

  16. Wang, L.R.L.; Yeh, Y.H.: A refined seismic analysis and design of buried pipeline for fault movement. Earthq. Eng. Struct. Dyn. 13, 75–96 (1985)

    Article  Google Scholar 

  17. Karamitros, D.; Bouckovalas, G.; Kouretzis, G.; Gkesouli, V.: An analytical method for strength verification of buried steel pipelines at normal fault crossings. Soil Dyn. Earthq. Eng. 31, 1452–1464 (2011)

    Article  Google Scholar 

  18. Karamitros, D.K.; Bouckovalas, G.D.; Kouretzis, G.P.: Stress analysis of buried steel pipelines at strike-slip fault crossings. Soil Dyn. Earthq. Eng. 27, 200–211 (2007)

    Article  Google Scholar 

  19. Abdoun, T.H.; Ha, D.; O’Rourke, M.J.; Symans, M.D.; O’Rourke, T.D.; Palmer, M.C.; Stewart, H.E.: Factors influencing the behavior of buried pipelines subjected to earthquake faulting. Soil Dyn. Earthq. Eng. 29, 415–427 (2009)

    Article  Google Scholar 

  20. Ha, D.; Abdoun, T.H.; O’Rourke, M.J.; Symans, M.D.; O’Rourke, T.D.; Palmer, M.C.; Stewart, H.E.: Centrifuge modeling of earthquake effects on buried high-density polyethylene (HDPE) pipelines crossing fault zones. J. Geotech. Geoenviron. Eng. 134, 1501–1515 (2008)

    Article  Google Scholar 

  21. O’Rourke, M.; Gadicherla, V.; Abdoun, T.: Centrifuge modeling of PGD response of buried pipe. Earthq. Eng. Eng. Vib. 4, 69–73 (2005)

    Article  Google Scholar 

  22. Hojat Jalali, H.; Rofooei, F.R.; Khajeh Ahmad Attari, N.: Performance of buried gas distribution pipelines subjected to reverse fault movement. J. Earthq. Eng. 22, 1068–1091 (2018)

    Article  Google Scholar 

  23. Jalali, H.H.; Rofooei, F.R.; Attari, N.K.A.; Samadian, M.: Experimental and finite element study of the reverse faulting effects on buried continuous steel gas pipelines. Soil Dyn. Earthq. Eng. 86, 1–14 (2016)

    Article  Google Scholar 

  24. Rofooei, F.R.; Jalali, H.H.; Attari, N.K.A.; Kenarangi, H.; Samadian, M.: Parametric study of buried steel and high density polyethylene gas pipelines due to oblique-reverse faulting. Can. J. Civ. Eng. 42, 178–189 (2015)

    Article  Google Scholar 

  25. Ariman, T.; Lee, B.-J.: Tension Bending Behavior of Buried Pipelines Under Large Ground Deformations in Active Faults. In: Lifeline Earthquake Engineering, ASCE, pp. 226–233. (1991)

  26. Meyersohn, W.D.: Analytical and design considerations for the seismic response of buried piplines. Cornell University, Ithaca (1991)

    Google Scholar 

  27. Liu, X.; O’Rourke, M.J.: Behaviour of continuous pipeline subject to transverse PGD. Earthq. Eng. Struct. Dyn. 26, 989–1003 (1997)

    Article  Google Scholar 

  28. Far, M.S.: Discussion of “a semi-empirical model for peak strain prediction of buried X80 steel pipelines under compression and bending at strike-slip fault crossings” by Liu et al. (2016). J. Nat. Gas Sci. Eng. 52, 432–433 (2018)

    Article  Google Scholar 

  29. Liu, X.; Zhang, H.; Han, Y.; Xia, M.; Zheng, W.: A semi-empirical model for peak strain prediction of buried X80 steel pipelines under compression and bending at strike-slip fault crossings. J. Nat. Gas Sci. Eng. 32, 465–475 (2016)

    Article  Google Scholar 

  30. Takada, S.; Hassani, N.; Fukuda, K.: A new proposal for simplified design of buried steel pipes crossing active faults. Earthq. Eng. Struct. Dyn. 30, 1243–1257 (2001)

    Article  Google Scholar 

  31. Trifonov, O.V.: Numerical stress–strain analysis of buried steel pipelines crossing active strike-slip faults with an emphasis on fault modeling aspects. J. Pipeline Syst. Eng. Pract. (2014)

  32. Trifonov, O.V.; Cherniy, V.P.: Elastoplastic stress–strain analysis of buried steel pipelines subjected to fault displacements with account for service loads. Soil Dyn. Earthq. Eng. 33, 54–62 (2012)

    Article  Google Scholar 

  33. Vazouras, P.; Karamanos, S.A.; Dakoulas, P.: Finite element analysis of buried steel pipelines under strike-slip fault displacements. Soil Dyn. Earthq. Eng. 30, 1361–1376 (2010)

    Article  Google Scholar 

  34. Vazouras, P.; Karamanos, S.A.; Dakoulas, P.: Mechanical behavior of buried steel pipes crossing active strike-slip faults. Soil Dyn. Earthq. Eng. 41, 164–180 (2012)

    Article  Google Scholar 

  35. Xie, X.; Symans, M.D.; O’Rourke, M.J.; Abdoun, T.H.; O’Rourke, T.D.; Palmer, M.C.; Stewart, H.E.: Numerical modeling of buried HDPE pipelines subjected to strike-slip faulting. J. Earthq. Eng. 15, 1273–1296 (2011)

    Article  Google Scholar 

  36. Zhang, J.; Liang, Z.; Han, C.: Buckling behavior analysis of buried gas pipeline under strike-slip fault displacement. J. Nat. Gas Sci. Eng. 21, 921–928 (2014)

    Article  Google Scholar 

  37. González, O.; Fraile, A.; Hermanns, L.: A numerical and semi-analytical comparison for structural analysis of fault-crossing pipelines. Comptes Rendus Mécanique 343, 397–409 (2015)

    Article  Google Scholar 

  38. Joshi, S.; Prashant, A.; Deb, A.; Jain, S.K.: Analysis of buried pipelines subjected to reverse fault motion. Soil Dyn. Earthq. Eng. 31, 930–940 (2011)

    Article  Google Scholar 

  39. Liu, X.; Zhang, H.; Li, M.; Xia, M.; Zheng, W.; Wu, K.; Han, Y.: Effects of steel properties on the local buckling response of high strength pipelines subjected to reverse faulting. J. Nat. Gas Sci. Eng. 33, 378–387 (2016)

    Article  Google Scholar 

  40. ABAQUS, Abaqus v6. 12 Documentation-ABAQUS analysis user’s manual, Abaqus, Providence, RI, (2012)

  41. Guidelines for the design of buried steel Pipe American Lifelines Alliance—ASCE, July 2001 (with addenda through February 2005)

  42. Ramberg, W.; Osgood, W.R.; U.S.N.A.C.F. Aeronautics: Description of Stress–Strain Curves by Three Parameters, National Advisory Committee for Aeronautics, (1943)

  43. Savidis, S.A.; Schepers, W.; Nomikos, E.; Papadakos, G.: Design of a natural gas pipeline subject to permanent ground deformation at normal faults: a parametric study on numerical VS. Semi-Anal. Proced. Santiago 10, 13 (2011)

    Google Scholar 

  44. IITK-GSDMA, Guidelines for seismic design of buried pipelines. In: National Information Center of Earthquake Engineering, Indian Institute of Technology Kanpur (2007)

  45. C.S. Association, Oil and Gas Pipeline Systems-CSA Z662-15, CSA Group (2015)

  46. EN 1998-4: Eurocode 8: Design of structures for earthquake resistance—part 4: Silos, tanks and pipelines. In: CEN European Committee for Standardisation (2006)

  47. Liu, B.; Liu, X.; Zhang, H.: Strain-based design criteria of pipelines. J. Loss Prev. Process Ind. 22, 884–888 (2009)

    Article  Google Scholar 

  48. Whidden, W.R.: Buried flexible steel pipe: design and structural analysis. In: American Society of Civil Engineers, (2009)

  49. Kong, L.; Zhou, X.; Chen, L.; Shuai, J.; Huang, K.; Yu, G.: True stress–strain curves test and material property analysis of API X65 and API X90 gas pipeline steels. J. Pipeline Syst. Eng. Pract. 9, 04017030 (2018)

    Article  Google Scholar 

  50. Specification, API.: 5L, Specification for Line Pipe, Edition March, (2004)

  51. Sreenath, S.; Saravanan, U.; Kalyanaraman, V.: Beam and shell element model for advanced analysis of steel structural members. J. Constr. Steel Res. 67, 1789–1796 (2011)

    Article  Google Scholar 

  52. Sarawit, A.; Kim, Y.; Bakker, M.; Peköz, T.: The finite element method for thin-walled members-applications. Thin-walled Struct. 41, 191–206 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific Grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Seyedi Hosseininia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monshizadeh Naeen, A., Seyedi Hosseininia, E. Numerical Investigation on the Deformational Behavior of Continuous Buried Pipelines Under Reverse Faulting. Arab J Sci Eng 45, 8475–8490 (2020). https://doi.org/10.1007/s13369-020-04766-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04766-2

Keywords

Navigation