Skip to main content
Log in

Thermal Aging of Perovskite Based Natural Gas Vehicle Catalysts: Dependency of the Mode of Pd Incorporation

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Catalytic performance of fresh and aged impregnated Pd/LaFeO3 and sol gel LaFe1−xPdxO3 Natural Gas Vehicle Three-Way Catalysts, in powder form and wash-coated on ceramic monolith, have been investigated. Aging at 980 °C in wet atmosphere has no detrimental effect on the structural properties with the preservation of the orthorhombic structure of the perovskite. On the other hand, a loss of specific surface area is accompanied with surface Pd enrichment on LaFe1−xPdxO3 through ex solution process. It was found that the mode of Pd incorporation and subsequent aging has a limited impact on the catalytic performance at low temperature for the NO/H2 reaction. On the other hand, sharp rate enhancement in NO and methane conversion occurs at high temperature related to change in the reaction pathway from methane combustion to reforming reactions producing more efficient reducing agents to reduce NO. Such behaviour has been explained by the coexistence of palladium stabilized at different oxidation state at the surface and inside the perovskite structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hosseini M, Dincer I, Ozbilen A (2018) Exerbetic, energetic environmental dinmensios, pp 731–750

  2. Fadiran G, Adebusuyi AT, Fadiran D (2019) Energy 169:467–477

    Google Scholar 

  3. Salaün M, Kouakou A, Da Costa S, Da Costa P (2009) Appl Catal 88:386–397

    Google Scholar 

  4. Lampert JK, Kazi MS, Farrauto RJ (1997) Appl Catal B 14:211–223

    CAS  Google Scholar 

  5. Gélin P, Urfels L, Primet M, Tena E (2003) Catal Today 83:45–57

    Google Scholar 

  6. Mowery DL, Graboski MS, Ohno TR, McCormick RL (1999) Appl Catal B 21:157–169

    CAS  Google Scholar 

  7. Fujimoto K, Ribeiro FH, Avalos-Borja M, Iglesia E (1998) J Catal 179:431–442

    CAS  Google Scholar 

  8. Enger BC, Lødeng R, Holmen A (2008) Appl Catal A 346:1–27

    CAS  Google Scholar 

  9. Au-Yeung J, Chen K, Bell AT, Iglesia E (1999) J Catal 188:132–139

    CAS  Google Scholar 

  10. Huang F, Chen J, Hu W, Li G, Wu Y, Yuan S, Zhong L, Chen Y (2017) Appl Catal 219:73–81

    CAS  Google Scholar 

  11. Bounechada D, Groppi G, Forzatti P, Kallinen K, Kinnunen T (2012) Appl Catal 119–120:91–99

    Google Scholar 

  12. Chen J, Wu Y, Hu W, Qu P, Zhang G, Granger P, Zhong L, Chen Y (2020) Appl Catal B 264: Article 118475

  13. Datye A, Bravo J, Nelson T, Atanasova P, Lyubovski M (2000) Pfefferle. Appl Catal A 198:179–196

    CAS  Google Scholar 

  14. Renème Y, Dhainaut F, Pietrzyk S, Chaar M, Van Veen AC (2012) Appl Catal B 126:239–248

    Google Scholar 

  15. Farrauto R, Lampert J, Hobson M, Waterman E (1995) Appl Catal B 6:263–270

    CAS  Google Scholar 

  16. Wei X, Hug P, Figi R, Trottmann M, Weidenkaff A, Ferri D (2010) Appl Catal B 94:27–37

    CAS  Google Scholar 

  17. Tanaka H, Misono M (2001) Curr Opin State Mater Sci 5:381–387

    CAS  Google Scholar 

  18. Cimino S, Casaletto MP, Lisi L, Russo G (2007) Appl Catal A 327:238–246

    CAS  Google Scholar 

  19. Lu Y, Michalow KA, Matam SK, Winckler A, Maegli AE, Yoon S, Heel A, Weidenkaff A, Ferri D (2014) Appl Catal B 144:631–643

    CAS  Google Scholar 

  20. Wu Y, Luo L (2008) React Kinet Catal Lett 93:305–313

    CAS  Google Scholar 

  21. Eyssler A, Mandaliev P, Winckler A, Hug P, Safonova O, Figi R, Weidenkaff A, Ferri D (2010) J Phys Chem C 114:4584–4594

    CAS  Google Scholar 

  22. Nishihata Y, Mizuki J, Akao T, Tanaka H, Uenishi M, Kimura M, Okamoto T, Hamada N (2002) Nature 418:164–167

    CAS  PubMed  Google Scholar 

  23. Katz MA, Graham GW, Duan Y, Liu H, Adamo C, Schlom DG, Pan X (2011) J Am Chem Soc 133:18090–18093

    CAS  PubMed  Google Scholar 

  24. Shirley DA (1972) Phys Rev B 5:4709–4714

    Google Scholar 

  25. Mamede AS, Leclercq G, Payen E, Granger P, Gengembre L, Grimblot J (2002) Surf Interface Anal 34:105–111

    CAS  Google Scholar 

  26. Dacquin JP, Cabié M, Henry CR, Lancelot C, Dujardin C, Raouf SR, Granger P (2010) J Catal 270:299–309

    CAS  Google Scholar 

  27. Dacquin JP, Lancelot C, Dujardin C, Cordier-Robert C, Granger P (2011) J Phys Chem C 115:1911–1921

    CAS  Google Scholar 

  28. Di Monte R, Kaspar J, Fornasiero P, Ferrero A, Gubitosa G, Graziani M (1998) Stud Surf Sci Catal 116:559–569

    Google Scholar 

  29. Ciambelli P, Cimino S, Lisi L, Faticanti M, Minelli G, Pettiti I, Porta P (2001) Appl Catal B 33:193–203

    CAS  Google Scholar 

  30. Zhang R, Alamdari H, Kaliaguine S (2006) J Catal 242:241–253

    CAS  Google Scholar 

  31. Wu Y, Cordier C, Berrier E, Nuns N, Dujardin C, Granger P (2013) Appl Catal B 140–141:151–163

    Google Scholar 

  32. Brigg D, Seah MP (1999) Practical surface analysis, vol 1, 2nd edn. Wiley, Chichester1

    Google Scholar 

  33. Slavinskaya EM, Stonkus OA, Gulyaev RV, Ivanova AS, Zaikovskii VI, Kuznetsov PA, Boronin AI (2011) Appl Catal A 401:83–97

    CAS  Google Scholar 

  34. Otto K, Haack LP, de Vries JE (1992) Appl Catal B 1(1):1–12

    CAS  Google Scholar 

  35. Olmos CM, Chinchilla LE, Rodrigues EG, Delgado JJ, Hungría AB, Blanco G, Pereira MFR, Orfăo JJM, Calvino JJ, Chen X (2016) Appl Catal B 197:222–235

    CAS  Google Scholar 

  36. Olmos CM, Chinchilla LE, Villa A, Delgado JJ, Hungría AB, Blanco G, Prati L, Calvino JJ, Chen X (2019) J Catal 375:44–55

    CAS  Google Scholar 

  37. Renème Y, Dhainaut F, Granger P (2012) Appl Catal 111–112:424–432

    Google Scholar 

  38. Banholzer WF, Park YO, Mark KM, Masel RL (1983) Surf Sci 128:176–190

    CAS  Google Scholar 

  39. Dhainaut F, Pietrzyk S, Granger P (2008) J Catal 258:296–305

    CAS  Google Scholar 

  40. Peden CHF, Belton DN, Schmieg SJ (1995) J Catal 155:204–218

    CAS  Google Scholar 

  41. Klinstedt F, Neyestanaki AK, Lindfors LE, Salmi T, Väyrynen J (2002) J Catal 206:248–262

    Google Scholar 

  42. Groppi G, Cristiani C, Lietti L, Ramella C, Valentini M, Forzatti P (1999) Catal Today 50:399–412

    CAS  Google Scholar 

  43. Zhang X, Long E, Li Y, Zhang L, Guo J, Gong M, Chen Y (2009) J Mol Catal A 308:73–78

    CAS  Google Scholar 

  44. Mondragón Rodríguez GC, Saruhan B (2010) Appl Catal B 93:304–313

    Google Scholar 

  45. Cullis CF, Nevell TG, Trimm DL (1972) J Chem Soc Faraday Trans 1:1406–1412

    Google Scholar 

  46. Caporali R, Chansai S, Burch R, Delgado JJ, Goguet A, Hardacre C, Mantarosie L, Thompsett D (2014) Appl Catal B 147:764–769

    CAS  Google Scholar 

  47. Zhang X, Li Y, Shen W (2012) J Nat Gas Chem 21:113–118

    CAS  Google Scholar 

  48. Singh UG, Li J, Benett JW, Rappe AM, Seshadri R, Scott SL (2007) J Catal 249:349–358

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Region Nord-Pas-de-Calais and ADEME for supporting this work through a Ph.D grant (Y. Renème). We greatly acknowledge Mrs Martine Trentesaux and Olivier Gardoll who conducted XPS measurements and thermal analysis.

Funding

This work has been done in the frame of the ANR project ANR-07-PDIT-001 « Caravelle».

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Granger.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 138 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Granger, P., Renème, Y., Lahougue, A. et al. Thermal Aging of Perovskite Based Natural Gas Vehicle Catalysts: Dependency of the Mode of Pd Incorporation. Top Catal 63, 1474–1484 (2020). https://doi.org/10.1007/s11244-020-01331-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01331-x

Keywords

Navigation