Skip to main content
Log in

Conflict Free Version of Covering Problems on Graphs: Classical and Parameterized

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

Let π be a family of graphs. In the classical π-Vertex Deletion problem, given a graph G and a positive integer k, the objective is to check whether there exists a subset S of at most k vertices such that GS is in π. In this paper, we introduce the conflict free version of this classical problem, namely Conflict Free π-Vertex Deletion (CF-π-VD), and study this problem from the viewpoint of classical and parameterized complexity. In the CF-π-VD problem, given two graphs G and H on the same vertex set and a positive integer k, the objective is to determine whether there exists a set \(S\subseteq V(G)\), of size at most k, such that GS is in π and H[S] is edgeless. Initiating a systematic study of these problems is one of the main conceptual contribution of this work. We obtain several results on the conflict free versions of several classical problems. Our first result shows that if π is characterized by a finite family of forbidden induced subgraphs then CF-π-VD is Fixed Parameter Tractable (FPT). Furthermore, we obtain improved algorithms for conflict free versions of several well studied problems. Next, we show that if π is characterized by a “well-behaved” infinite family of forbidden induced subgraphs, then CF-π-VD is W[1]-hard. Motivated by this hardness result, we consider the parameterized complexity of CF-π-VD when H is restricted to well studied families of graphs. In particular, we show that the conflict free version of several well-known problems such as Feedback Vertex Set, Odd Cycle Transversal, Chordal Vertex Deletion and Interval Vertex Deletion are FPT when H belongs to the families of d-degenerate graphs and nowhere dense graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. \(\mathcal {O}^{\star }\) suppresses the polynomial factor in the running time.

References

  1. Yannakakis, M.: Node-and edge-deletion NP-complete problems. In: Proceedings of the 10th annual ACM symposium on theory of computing, pp 253–264 (1978)

  2. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. J. Comput. Syst. Sci. 20, 219–230 (1980)

    Article  MathSciNet  Google Scholar 

  3. Fujito, T.: A unified approximation algorithm for node-deletion problems. Discret. Appl. Math. 86, 213–231 (1998)

    Article  MathSciNet  Google Scholar 

  4. Lund, C., Yannakakis, M.: On the hardness of approximating minimization problems. J. ACM 41, 960–981 (1994)

    Article  MathSciNet  Google Scholar 

  5. Fomin, F.V., Lokshtanov, D., Misra, N., Saurabh, S.: Planar F-deletion: Approximation, kernelization and optimal FPT algorithms. In: IEEE 53rd Annual Symposium on Foundations of Computer Science, pp 470–479 (2012)

  6. Viggo, K.: Polynomially bounded minimization problems which are hard to approximate, International Colloquium on Automata, Languages, and Programming, 52–63 (1993)

  7. Pferschy, U., Schauer, J.: The maximum flow problem with conflict and forcing conditions. In: International conference on network optimization, vol. 6701, pp 289–294 (2011)

  8. Pferschy, U., Schauer, J.: The maximum flow problem with disjunctive constraints. J. Comb. Optim. 26, 109–119 (2013)

    Article  MathSciNet  Google Scholar 

  9. Pferschy, U., Schauer, J.: Approximation of knapsack problems with conflict and forcing graphs. J. Comb. Optim. 33, 1300–1323 (2017)

    Article  MathSciNet  Google Scholar 

  10. Epstein, L., Favrholdt, L.M., Levin, A.: Online variable-sized bin packing with conflicts. Discret. Optim. 8, 333–343 (2011)

    Article  MathSciNet  Google Scholar 

  11. Even, G., Halldȯrsson, M.M., Kaplan, L., Ron, D.: Scheduling with conflicts: online and offline algorithms. J. Sched. 12, 199–224 (2009)

    Article  MathSciNet  Google Scholar 

  12. Darmann, A., Pferschy, U., Schauer, J., Woeginger, G.J.: Paths, trees and matchings under disjunctive constraints. Discret. Appl. Math. 159, 1726–1735 (2011)

    Article  MathSciNet  Google Scholar 

  13. Darmann, A., Pferschy, U., Schauer, J.: Determining a minimum spanning tree with disjunctive constraints. In: International Conference on Algorithmic Decision Theory, pp 414–423 (2009)

  14. Arkin, E.M., Banik, A., Carmi, P., Citovsky, G., Katz, M.J., Mitchell, J.S.B., Simakov, M.: Choice is hard, international symposium on algorithms and computation, 318–328 (2015)

  15. Banik, A., Panolan, F., Raman, V., Sahlot, V: Fréchet distance between a line and avatar point set. Algorithmica 80, 2616–2636 (2018)

    Article  MathSciNet  Google Scholar 

  16. Arkin, E.M., Banik, A., Carmi, P., Citovsky, G., Katz, M.J., Mitchell, J.S.B., Simakov, M.: Conflict-free covering, Proceedings of the 27th Canadian conference on computational geometry, 17–23 (2015)

  17. Cygan, M., Fomin, F.V., Kowalik, Łukasz, Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer-Verlag, Berlin (2015)

    Book  Google Scholar 

  18. Fomin, F.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization: theory of parameterized preprocessing. Cambridge University Press, Cambridge (2019)

  19. Misra, N., Philip, G., Raman, V., Saurabh, S.: On parameterized independent feedback vertex set. Theor. Comput. Sci. 461, 65–75 (2012)

    Article  MathSciNet  Google Scholar 

  20. Lokshtanov, D., Panolan, F., Saurabh, S., Sharma, R., Zehavi, M.: Covering small independent sets and separators with applications to parameterized algorithms. In: Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms, pp 2785–2800 (2018)

  21. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inf. Process. Lett. 58, 171–176 (1996)

    Article  MathSciNet  Google Scholar 

  22. Cao, Y., Marx, D.: Interval deletion is fixed-parameter tractable. In: Proceedings of the 25th annual ACM-siam symposium on discrete algorithms, 11, 21:1–21:35 (2015)

  23. Kociumaka, T., Pilipczuk, M.: Faster deterministic feedback vertex set. Inf. Process. Lett. 114, 556–560 (2014)

    Article  MathSciNet  Google Scholar 

  24. Reed, B.A., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett. 32, 299–301 (2004)

    Article  MathSciNet  Google Scholar 

  25. Marx, D.: Chordal deletion is fixed-parameter tractable. Algorithmica 57, 747–768 (2010)

    Article  MathSciNet  Google Scholar 

  26. Cao, Y., Marx, D.: Chordal editing is fixed-parameter tractable. Algorithmica 75, 118–137 (2016)

    Article  MathSciNet  Google Scholar 

  27. Nesetril, J., de Mendez, P.O.: Sparsity - graphs, structures, and algorithms. Springer Science & Business Media (2012)

  28. Nešetřil, J., de Mendez, P.O.: On nowhere dense graphs. Eur. J. Comb. 32, 600–617 (2011)

    Article  MathSciNet  Google Scholar 

  29. Krom, M.R.: The decision problem for a class of first-order formulas in which all disjunctions are binary. Math. Log. Q. 13, 15–20 (1967)

    Article  MathSciNet  Google Scholar 

  30. Misra, N., Narayanaswamy, N.S., Raman, V., Shankar, B.S.: Solving min ones 2-sat as fast as vertex cover. Theor. Comput. Sci. 506, 115–121 (2013)

    Article  MathSciNet  Google Scholar 

  31. Gusfield, D., Pitt, L.: A bounded approximation for the minimum cost 2-sat problem. Algorithmica 8, 103–117 (1992)

    Article  MathSciNet  Google Scholar 

  32. Xiao, M., Nagamochi, H.: Exact algorithms for maximum independent set. Inf. Comput. 255, 126–146 (2017)

    Article  MathSciNet  Google Scholar 

  33. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor. Comput. Sci. 411, 3736–3756 (2010)

    Article  MathSciNet  Google Scholar 

  34. Wahlström, M.: Algorithms, measures and upper bounds for satisfiability and related problems, Doctoral dissertation, Department of Computer and Information Science, Linköpings universitet (2007)

  35. Cygan, M., Pilipczuk, M.: Split vertex deletion meets vertex cover: New fixed-parameter and exact exponential-time algorithms. Inf. Process. Lett. 113, 179–182 (2013)

    Article  MathSciNet  Google Scholar 

  36. Dom, M., Guo, J., Hu̇ffner, F., Niedermeier, R., Truß, A.: Fixed-parameter tractability results for feedback set problems in tournaments. Journal of Discrete Algorithms 8, 76–86 (2010)

    Article  MathSciNet  Google Scholar 

  37. Kumar, M., Lokshtanov, D.: Faster exact and parameterized algorithm for feedback vertex set in tournaments, 33rd symposium on theoretical aspects of computer science, 49:1–49:13 (2016)

  38. Cao, Y.: Linear recognition of almost interval graphs. In: Proceedings of the 27th annual ACM-SIAM symposium on discrete algorithms, pp 1096–1115 (2016)

  39. Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for feedback vertex set problems. J. Comput. Syst. Sci. 74, 1188–1198 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pallavi Jain.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by SERB-NPDF fellowship (PDF/2016/003508) of DST, India

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, P., Kanesh, L. & Misra, P. Conflict Free Version of Covering Problems on Graphs: Classical and Parameterized. Theory Comput Syst 64, 1067–1093 (2020). https://doi.org/10.1007/s00224-019-09964-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-019-09964-6

Keywords

Navigation