Skip to main content
Log in

Covalent modification of reduced graphene oxide with piperazine as a novel nanoadsorbent for removal of H2S gas

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In the present research, piperazine grafted-reduced graphene oxide RGO-N-(piperazine) was synthesized through a three-step reaction and employed as a highly efficient nanoadsorbent for H2S gas removal. Temperature optimization within the range of 30–90 °C was set which significantly improved the adsorption capacity of the nanoadsorbent. The operational conditions including the initial concentration of H2S (60,000 ppm) with CH4 (15 vol%), H2O (10 vol%), O2 (3 vol%) and the rest by helium gas and gas hour space velocity (GHSV) 4000–6000 h−1 were examined on adsorption capacity. The results of the removal of H2S after 180 min by RGO-N-(piperazine), reduced graphene oxide (RGO), and graphene oxide (GO) were reported as 99.71, 99.18, and 99.38, respectively. Also, the output concentration of H2S after 180 min by RGO-N-(piperazine), RGO, and GO was found to be 170, 488, and 369 ppm, respectively. Both chemisorption and physisorption are suggested as mechanism in which the chemisorption is based on an acid–base reaction between H2S and amine, epoxy, hydroxyl functional groups on the surface of RGO-N-(piperazine), GO, and RGO. The piperazine augmentation of removal percentage can be attributed to the presence of amine functional groups in the case of RGO-N-(piperazine) versus RGO and GO. Finally, analyses of the equilibrium models used to describe the experimental data showed that the three-parameter isotherm equations Toth and Sips provided slightly better fits compared to the three-parameter isotherms.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Rodhe, Science 248, 1217 (1990)

    CAS  PubMed  Google Scholar 

  2. D.A. Lashof, D.R. Ahuja, Nature 344, 529 (1990)

    CAS  Google Scholar 

  3. R. Dickerson, S. Kondragunta, G. Stenchikov, K. Civerolo, B. Doddridge, B. Holben, Science 278, 827 (1997)

    CAS  PubMed  Google Scholar 

  4. J.Q. Koenig, W.E. Pierson, R. Frank, Environ. Res. 22, 145 (1980)

    CAS  PubMed  Google Scholar 

  5. G. D’amato, G. Liccardi, M. D’amato, J. Invest. Allergol. Clin. Immunol. 10, 123 (2000)

    Google Scholar 

  6. N. Stjernberg, A. Eklund, L. Nyström, L. Rosenhall, A. Emmelin, L. Strömqvist, Eur. J. Resp. Dis. 67, 41 (1985)

    CAS  Google Scholar 

  7. C.R. Usher, A.E. Michel, V.H. Grassian, Chem. Rev. 103, 4883 (2003)

    CAS  PubMed  Google Scholar 

  8. C.K. Chan, X. Yao, Atmos. Environ. 42, 1 (2008)

    CAS  Google Scholar 

  9. J. Wang, C. Yang, Y.R. Zhao, H.L. Fan, Z.D. Wang, J. Shangguan, J. Mi, Ind. Eng. Chem. Res. 56, 12621 (2017)

    CAS  Google Scholar 

  10. M. Khabazipour, M. Anbia, Ind. Eng. Chem. Res. 58, 22133 (2019)

    CAS  Google Scholar 

  11. K. Ciahotný, V. Kyselová, Energy Fuels 33, 5316 (2019)

    Google Scholar 

  12. W. Quan, X. Wang, C. Song, Energy Fuels 31, 9517 (2017)

    CAS  Google Scholar 

  13. M. Syed, G. Soreanu, P. Falletta, M. Béland, Can. Biosyst. Eng. 48, 2 (2006)

    Google Scholar 

  14. E. Llobet, J. Brunet, A. Pauly, A. Ndiaye, C. Varenne, Sensors 17, 391 (2017)

    Google Scholar 

  15. S. Khodabakhshi, P.F. Fulvio, E. Andreoli, Carbon 604, 162 (2020)

    Google Scholar 

  16. S. Dastkhoon, Z. Tavakoli, S. Khodabakhshi, M. Baghernejad, M.K. Abbasabadi, N. J. Chem. 39, 7268 (2015)

    CAS  Google Scholar 

  17. S. Khodabakhshi, M.K. Abbasabadi, S. Heydarian, S.G. Shirazi, F. Marahel, Lett. Org. Chem. 12, 465 (2015)

    CAS  Google Scholar 

  18. S. Khodabakhshi, M.K. Abbasabadi, M. Baghrnejad, F. Marahel, J. Chin. Chem. Soc. 62, 9 (2015)

    CAS  Google Scholar 

  19. A. Trégouëta, M.K. Abbasabadib, P. Gholami, Anal. Method Environ. Chem. J. 3, 5 (2020)

    Google Scholar 

  20. A.M. Rashidi, M. Mirzaeian, S. Khodabakhshi, J. Nat. Gas Sci. Eng. 25, 103 (2015)

    CAS  Google Scholar 

  21. P. Gholami, A.M. Rashidi, M. K. Abbasabadi, M. Pourkhalil, M. Jahangiri, N. Izadi, Res. Chem. Intermed. (2020)

  22. M. Khaleghi Abbasabadi, D. Azarifar, Appl. Org. Chem. (2020)

  23. A. Rashidi, Z. Tavakoli, Y. Tarak, S. Khodabakhshi, M.K. Abbasabadi, J. Chin. Chem. Soc. 63, 399 (2016)

    CAS  Google Scholar 

  24. T.P. Fellinger, F.D.R. Hasché, P. Strasser, M. Antonietti, J. Am. Chem. Soc. 134, 4072 (2012)

    CAS  PubMed  Google Scholar 

  25. A.K. Geim, K.S. Novoselov, Nanosci. Technol

  26. H.R.E. Zand, H. Ghafuri, A. Rashidizadeh, Z. Khoushab, Ind. Eng. Chem. Res. 58, 5379 (2019)

    Google Scholar 

  27. H.R.E. Zand, H. Ghafuri, N. Ghanbari, Chem. Sel. 3, 8229 (2018)

    CAS  Google Scholar 

  28. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, Science 312, 1191 (2006)

    CAS  PubMed  Google Scholar 

  29. C.E.N.E.R. Rao, A.E.K. Sood, K.E.S. Subrahmanyam, A. Govindaraj, Angew. Chem. Int. Ed. 48, 7752 (2009)

    CAS  Google Scholar 

  30. C. Rao, A. Sood, R. Voggu, K. Subrahmanyam, J. Phys. Chem. Lett. 1, 572 (2010)

    CAS  Google Scholar 

  31. W. Cai, R.D. Piner, F.J. Stadermann, S. Park, M.A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S.J. An, M. Stoller, Science 321, 1815 (2008)

    CAS  PubMed  Google Scholar 

  32. A. Lerf, H. He, M. Forster, J. Klinowski, J Phys. Chem. B 102, 4477 (1998)

    CAS  Google Scholar 

  33. S. Khodabakhshi, F. Marahel, A. Rashidi, M.K. Abbasabadi, J. Chin. Chem. Soc. 62, 389 (2015)

    CAS  Google Scholar 

  34. M. Khaleghi-Abbasabadi, D. Azarifar, Res. Chem. Intermed. 45, 2095 (2019)

    CAS  Google Scholar 

  35. D. Azarifar, M. Khaleghi-Abbasabadi, Res. Chem. Intermed. 45, 199 (2019)

    CAS  Google Scholar 

  36. M.K. Abbasabadi, A. Rashidi, S. Khodabakhshi, J. Nat. Gas Sci. Eng. 28, 87 (2016)

    Google Scholar 

  37. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45, 1558 (2007)

    CAS  Google Scholar 

  38. S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442, 282 (2006)

    CAS  PubMed  Google Scholar 

  39. W.S. Hummers Jr., R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)

    CAS  Google Scholar 

  40. E. Rodrigo, B.G. Alcubill, R. Sainz, J.G. Fierro, R. Ferritto, M.B. Cid, Chem. Commun. 50, 6270 (2014)

    CAS  Google Scholar 

  41. M.K. Abbasabadi, A. Rashidi, J. Safaei-Ghomi, S. Khodabakhshi, R. Rahighi, J. Sulf. Chem. 36, 660 (2015)

    Google Scholar 

  42. H. Kim, K.Y. Park, J. Hong, K. Kang, Sci. Rep. 4, 5278 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  43. W. He, C. Jiang, J. Wang, L. Lu, Angew. Chem. Int. Ed. 53, 9503 (2014)

    CAS  Google Scholar 

  44. L. Qu, Y. Liu, J.B. Baek, L. Dai, ACS Nano 4, 1321 (2010)

    CAS  PubMed  Google Scholar 

  45. S. Pei, H.M. Cheng, Carbon 50, 3210 (2012)

    CAS  Google Scholar 

  46. Y. Geng, S.J. Wang, J.K. Kim, Science 336, 592 (2009)

    CAS  Google Scholar 

  47. A. Mohamadalizadeh, J. Towfighi, A. Rashidi, A. Mohajeri, M. Golkar, Ind. Eng. Chem. Res. 50, 8050 (2011)

    CAS  Google Scholar 

  48. R. C. Bansal, M. Goyal, Activ. Carbon A. CRC press: (200)

  49. T.J. Bandosz, J. Colloid Interface Sci. 246, 1 (2002)

    CAS  PubMed  Google Scholar 

  50. J.P. Boudou, M. Chehimi, E. Broniek, T. Siemie-niewska, J. Bimer, Carbon 41, 1999 (2003)

    CAS  Google Scholar 

  51. O. Mabayoje, M. Seredych, T.J. Bandosz, ACS Appl. Mater. Interfaces 4, 3316 (2012)

    CAS  PubMed  Google Scholar 

  52. J.H. Tsai, F.T. Jeng, H.L. Chiang, Adsorption 7, 357 (2001)

    CAS  Google Scholar 

  53. Q. Chen, J. Wang, X. Liu, X. Zhao, W. Qiao, D. Long, L. Ling, Carbon 49, 3773 (2011)

    CAS  Google Scholar 

  54. O. Mabayoje, M. Seredych, T.J. Bandosz, A.C.S. Appl, Mater. Interfaces 4, 3316 (2012)

    CAS  Google Scholar 

  55. Y. Chuncai, Sep. Purif. Technol. 19, 237 (2000)

    Google Scholar 

  56. J.P.B. Chehimi, M.E. Broniek, T. Siemieniewska, J. Bimer, Carbon 41, 1999 (2003)

    Google Scholar 

  57. H.M.F. Freundlich, J. Phys. Chem. 57, 1100 (1906)

    Google Scholar 

  58. I. Langmuir, Phys. Rev. 8, 149 (1916)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Research Institute of Petroleum Industry (RIPI), which is also greatly acknowledged for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Khaleghi Abbasabadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaleghi Abbasabadi, M., Khodabakhshi, S., Esmaili Zand, H.R. et al. Covalent modification of reduced graphene oxide with piperazine as a novel nanoadsorbent for removal of H2S gas. Res Chem Intermed 46, 4447–4463 (2020). https://doi.org/10.1007/s11164-020-04214-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-020-04214-8

Keywords

Navigation