Skip to main content
Log in

Photocatalytic performances of stand-alone graphene oxide (GO) and reduced graphene oxide (rGO) nanostructures

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The present study reports photocatalytic behaviors of stand-alone graphene oxide (GO) and reduced graphene oxide (rGO) nanostructures synthesized by improved Hummer’s method. The synthesized materials were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, ultra-violet visible (UV–Vis) and Fourier-transform infrared (FTIR) spectrometry. The photocatalytic activities of the synthesized nanostructures were evaluated from monitoring the degradation of methylene blue (MB) dye solution under UV/sunlight exposure. The experimental results showed that stand-alone GO/rGO nanostructures have significant intrinsic photocatalytic character to replace other toxic semiconductor photocatalysts. The photocatalytic character of bare GO/rGO nanomaterials are attributed to existence of finite band gap tuned by oxygen containing functionalities on their aromatic rings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y.: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269–271 (2001)

    Google Scholar 

  • Bayat, A., Saievar-Iranizad, E.: Graphene quantum dots decorated rutile TiO2 nanoflowers for water splitting application. J. Energy Chem. 27, 306–310 (2018)

    Google Scholar 

  • Berger, C., et al.: Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006)

    ADS  Google Scholar 

  • Bourlinos, A.B.: Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19, 6050–6055 (2003)

    Google Scholar 

  • Chang, X., Li, Z., Zhai, X., Sun, S., Gu, D., Dong, L., Yin, Y., Zhu, Y.: Efficient synthesis of sunlight-driven ZnO-based heterogeneous photocatalysts. Mater. Des. 98, 324–332 (2016)

    Google Scholar 

  • Chen, C.W., Robertson, J.: Nature of disorder and localization in amorphouscarbon. J. Non Cryst. Solids 227-230, 602–606 (1998). (Part 1)

    ADS  Google Scholar 

  • Chen, D., Tang, L., Li, J.: Graphene-based materials in electrochemistry. Chem. Soc. Rev. 39, 3157–3180 (2010)

    Google Scholar 

  • Chen, X., Liu, L., Yu, P.Y., Mao, S.S.: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011)

    ADS  Google Scholar 

  • Chen, J., Yao, B., Li, C., Shi, G.: An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 64, 225–229 (2013a)

    Google Scholar 

  • Chen, C.Y., Kuo, J.T., Yang, H.A., Chung, Y.C.: A coupled biological and photocatalysis pretreatment system for the removal of crystal violet from wastewater. Chemosphere 92, 695–701 (2013b)

    ADS  Google Scholar 

  • Chen, Z., Wang, T., Jin, X., Chen, Z., Megharaj, M., Naidu, R.: Multifunctional kaolinite-supported nanoscale zero-valent iron used for the adsorption and degradation of crystal violet in aqueous solution. J. Colloids Interface Sci. 398, 59–66 (2013c)

    ADS  Google Scholar 

  • Choi, W.Y., Termin, A., Hoffmann, M.R.: The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 98, 13669–13679 (1994)

    Google Scholar 

  • Choi, W., Lahiri, I., Seelaboyina, R., Kang, Y.S.: Synthesis of graphene and its applications: a review. J. Crit. Rev.Solid State Mater. Sci. 35, 52–71 (2010)

    ADS  Google Scholar 

  • Dhakshinamoorthy, A., Alvaro, M., Concepcion, P., Fornes, V., Garcia, H.: Graphene oxide as an acid catalyst for the room temperature ring opening of epoxides. Chem. Commun. 48, 5443–5445 (2012)

    Google Scholar 

  • Eda, G., Chowalla, M.: Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22, 2392–2415 (2010)

    Google Scholar 

  • Emeline, A.V., Kuznetsov, V.N., Rybchuk, V.K., Serpone, N.: Visible-light-active titania photocatalysts: the case of N-doped TiO2s properties and some fundamental issues. Int. J. Photoenergy 2008, 1–19 (2008)

    Google Scholar 

  • Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    ADS  Google Scholar 

  • Hoffmann, M.R., Martin, S.T., Choi, W., Bahnemann, D.W.: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995)

    Google Scholar 

  • Huang, Q., Tian, S., Zeng, D., Wang, X., Song, W., Li, Y., Xiao, W., Xie, C.: Enhanced photocatalytic activity of chemically bonded TiO2/graphene composites based on the effective interfacial charge transfer through the C–Ti bond. ACS Catal. 3, 1477–1485 (2013)

    Google Scholar 

  • Hummers, W.S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)

    Google Scholar 

  • Huo, Y., Yang, X., Zhu, J., Li, H.: Highly active and stable CdS–TiO2 visible photocatalyst prepared by in situ sulfurization under supercritical conditions. Appl. Catal. B 106, 69–75 (2011)

    Google Scholar 

  • Ito, J., Nakamura, J., Natori, A.: Semiconducting nature of the oxygen-adsorbed graphene sheet. J. Appl. Phys. 103, 113712 (2008)

    ADS  Google Scholar 

  • Jeong, H., Jin, M., So, K., Lim, S., Lee, Y.: Tailoring the characteristics of graphite oxides by different oxidation times. J. Phys. D Appl. Phys. 42, 065418 (2009)

    ADS  Google Scholar 

  • Jiang, X., Nisar, J., Pathak, B., Zhao, J., Ahuja, R.: Graphene oxide as a chemically tunable 2-D material for visible-light photocatalyst applications. J. Catal. 299, 204–209 (2013)

    Google Scholar 

  • Kaviyarasu, K., Maria Magdalane, C., Jayakumar, D., Samson, Y., Bashir, A.K.H., Maaza, M., Letsholathebe, D., Mahmoud, A.H., Kennedy, J.: High performance of pyrochlore like Sm2Ti2O7 heterojunction photocatalyst for efficient degradation of rhodamine-B dye with waste water under visible light irradiation. J. King Saud Univ. Sci. 32, 1516–1522 (2020)

    Google Scholar 

  • Kim, F., Cote, L.J., Huang, J.: Graphene oxide: surface activity and two-dimensional assembly. Adv. Mater. 22, 1954–1958 (2010)

    Google Scholar 

  • Kong, X.K., Chen, Q.W., Lun, Z.Y.: Probing the influence of different oxygenated groups on graphene oxide’s catalytic performance. J. Mater. Chem. A 2, 610–613 (2014)

    Google Scholar 

  • Krishnamoorthy, K., Mohan, R., Kim, S.J.: Graphene oxide as a photocatalytic material. Appl. Phys. Lett. 98, 244101 (2011)

    ADS  Google Scholar 

  • Lerf, A., He, H., Forster, M., Klinowski, J.: Structure of graphite oxide revisited. J. Phys. Chem. B 102, 4477–4482 (1998)

    Google Scholar 

  • Li, S.: Removal of crystal violet from aqueous solution by sorption into semi-interpenetrated networks hydrogels constituted of poly(acrylic acid-acrylamide-methacrylate) and amylose. Bioresour. Technol. 101, 2197–2202 (2010)

    Google Scholar 

  • Li, J., Lin, H., Yang, Z., Li, J.: A method for the catalytic reduction of graphene oxide at temperatures below 150 °C. Carbon 49, 3024–3030 (2011a)

    Google Scholar 

  • Li, G., Wang, T., Zhu, Y., Zhang, S., Mao, C., Wu, J., Jin, B., Tian, Y.: Preparation and photoelectrochemical performance of Ag/graphene/TiO2 composite film. Appl. Surf. Sci. 257, 6568–6572 (2011b)

    ADS  Google Scholar 

  • Linsebigler, A.L., Lu, G., Yates, J.T.: Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995)

    Google Scholar 

  • Liu, R., Liu, Y., Liu, C., Luo, S., Teng, Y., Yang, L., Yang, R., Cai, Q.: Enhanced photoelectrocatalytic degradation of 2,4-dichlorophenoxyacetic acid by CuInS2 nanoparticles deposition onto TiO2 nanotube arrays. J. Alloys Compd. 509, 2434–2440 (2011)

    Google Scholar 

  • Liu, J., Jia, Q., Long, J., Wang, X., Gao, Z., Gu, Q.: Amorphous NiO as co-catalyst for enhanced visible-light-driven hydrogen generation over g-C3N4 photocatalyst. Appl. Catal. B Environ. 222, 35–43 (2018)

    Google Scholar 

  • Loh, K.P., Bau, Q., Eda, G., Chhowalla, M.: Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem 2, 1015–1024 (2010)

    Google Scholar 

  • Maeda, K., Wang, X., Nishihara, Y., Lu, D., Antonietti, M., Domen, K.: Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light. J. Phys. Chem. C 113, 4940–4947 (2009)

    Google Scholar 

  • Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitkii, A., Zhengzong, S., Slesarev, A., Alemany, L.B., Lu, W., Tour, J.M.: Improved synthesis of graphene oxide. ACS Nano 8, 4806–4814 (2010)

    Google Scholar 

  • MariaMagdalane, C., Kaviyarasu, K., Priyadharsini, G.M., Bashir, A.K.H., Mayedwa, N., Matinise, N., Isaev, A.B., Dhabi, N.A., Arasu, M.V., Arokiyaraj, S., Kennedy, J., Maaza, M.: Improved photocatalytic decomposition of aqueous Rhodamine-B by solar light illuminated hierarchical yttria nanosphere decorated ceria nanorods. J. Mater. Res. Technol. 8, 2898–2909 (2019)

    Google Scholar 

  • Mathkar, A., Tozier, D., Cox, P., Ong, P., Galande, C., Balakrishnan, K., Leela, A., Reddy, M., Ajayan, P.M.: Controlled, stepwise reduction and band gap manipulation of graphene oxide. J. Phys. Chem. Lett. 3, 986–991 (2012)

    Google Scholar 

  • Min, S., Lu, G.: Dye-sensitized reduced graphene oxide photocatalysts for highly efficient visible-light-driven water reduction. J. Phys. Chem. C 115, 13938–13945 (2011)

    Google Scholar 

  • Nourbakhsh, A., Cantoro, M., Vosch, T., Pourtois, G., Clemente, F., Vanderveen, M.H., Hofkens, J., Heyns, M.M., Gendt, D., Sels, B.F.: Bandgap opening in oxygen plasma-treated graphene. Nanotechnology 21, 435203 (2010)

    Google Scholar 

  • Panimalar, S., Uthrakumar, R., TamilSelvi, E., Gomathy, P., Inmozhi, C., Kaviyarasu, K., Kennedy, J.: Studies of MnO2/g-C3N4 hetrostructure efficient of visible light photocatalyst for pollutants degradation by sol–gel technique. Surf. Interfaces 20, 100512 (2020)

    Google Scholar 

  • Periasamy, M., Thirumalaikumar, M.: Methods of enhancement of reactivity and selectivity of sodium borohydride for applications in organic synthesis. J. Organomet. Chem. 609, 137–151 (2000)

    Google Scholar 

  • Shin, H.J., Kim, K.K., Benayad, A., Yoon, S.M., Park, H.K., Jung, I.S., Jin, M.H., Jeong, H.K., Kim, J.M., Choi, J.Y., Lee, Y.H.: Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 19, 1987–1992 (2009)

    Google Scholar 

  • Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., Ruoff, R.S.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)

    Google Scholar 

  • Su, Y., Zhitomirsky, I.: Cataphoretic assembly of cationic dyes and deposition of carbon nanotube and graphene films. J. Colloids Interface Sci. 399, 46–53 (2013)

    ADS  Google Scholar 

  • Tong, Y., Zheng, C., Lang, W., Wu, F., Wu, T., Luo, W., Chen, H.: ZnO-embedded BiOI hybrid nanoflakes: synthesis, characterization and improved photocatalytic properties. Mater. Des. 122, 90–101 (2017)

    Google Scholar 

  • Wang, X., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J.M., Domen, K.: A metal-free polymeric photocatalyst for hydrogen production from water under visible light M. Antonietti. Nat. Mater. 8, 76–80 (2009)

    ADS  Google Scholar 

  • Wang, Y., Mo, Z., Zhang, P., Zhang, C., Han, L., Guo, R., Gou, H., Wei, X., Hu, R.: Synthesis of flower-like TiO2 microsphere/graphene composite for removal of organic dye from water. Mater. Des. 99, 378–388 (2016)

    Google Scholar 

  • Xiang, Q., Yu, J., Jaroniec, M.: Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 41, 782–796 (2012)

    Google Scholar 

  • Yang, L., Luo, S., Li, Y., Xiao, Y., Kang, Q., Cai, Q.: High efficient photocatalytic degradation of p-nitrophenol on a unique Cu2O/TiO2 pn heterojunction network catalyst. Environ. Sci. Technol. 44, 7641–7646 (2010)

    ADS  Google Scholar 

  • Yeh, T.F., Chan, F.F., Hsieh, C.T., Teng, H.: Graphite oxide with different oxygenated levels for hydrogen and oxygen production from water under illumination: the band positions of graphite oxide. J. Phys. Chem. C 115, 22587–22597 (2011)

    Google Scholar 

  • Zheng, Z.Z., Zheng, Q., Qiu, H.X., Yang, J.H.: A simple method for the reduction of graphene oxide by sodium borohydride with CaCl2 as a catalyst. New Carbon Mater. 30, 41–47 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Regional Scientific Instruments Centre (RSIC), Panjab University, Chandigarh for XRD and SEM studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inderjeet Singh Sandhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandhu, I.S., Chitkara, M., Rana, S. et al. Photocatalytic performances of stand-alone graphene oxide (GO) and reduced graphene oxide (rGO) nanostructures. Opt Quant Electron 52, 359 (2020). https://doi.org/10.1007/s11082-020-02473-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02473-8

Keywords

Navigation