Skip to main content

Advertisement

Log in

Genome-Wide Association Study of Body Shape-Related Traits in Large Yellow Croaker (Larimichthys crocea)

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Large yellow croaker (Larimichthys crocea) is one of the most important cultured marine fish on the southeast coast of China. Its body shape is important for the aquaculture industry since it affects the behavior such as swimming, ingesting, and evading, as well as customer preference. Due to the greater consumer demand of small head, slender body large yellow croaker, selecting and breeding of slender individuals with the assistance of genetic markers will benefit the industry quickly. In this study, several traits were employed to represent body shape, including body depth/body length (BD/BL), body thickness/body length (BT/BL), caudal peduncle depth/caudal peduncle length (CPDLR), tail length/body length (TL/BL), and body area/head area (BA/HA). Genome-wide association study was conducted with a panmictic population of 280 individuals to identify SNP and genes potentially associated with body shape. A set of 20 SNPs on 12 chromosomes were identified to be significantly associated with body shape-related traits. Besides, 5 SNPs were identified to be suggestive associated with CPDLR and BT/BL. Surrounding these SNPs, we found some body shape-related candidate genes, including fabp1, acrv1, bcor, mstn, bambi, and neo1, which involved in lipid metabolism, TGF-β signaling, and BMP pathway and other important regulatory pathways. These results will be useful for the understanding of the genetic basis of body shape formation and helpful for body shape controlling of large yellow croaker by using marker-assisted selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ao J, Mu Y, Xiang LX, Fan D, Feng M, Zhang S, Shi Q, Zhu LY, Li T, Ding Y, Nie L, Li Q, Dong WR, Jiang L, Sun B, Zhang X, Li M, Zhang HQ, Xie S, Zhu Y, Jiang X, Wang X, Mu P, Chen W, Yue Z, Wang Z, Wang J, Shao JZ, Chen X (2015) Genome sequencing of the perciform fish Larimichthys crocea provides insights into molecular and genetic mechanisms of stress adaptation. PLoS Genet 11:e1005118

    PubMed  PubMed Central  Google Scholar 

  • Arnegard ME, Mcgee MD, Matthews B, Marchinko KB, Conte GL, Kabir S, Bedford N, Bergek S, Chan YF, Jones FC, Kingsley DM, Peichel CL, Schluter D (2014) Genetics of ecological divergence during speciation. Nature 511:307–311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ayres DL, Darling A, Zwickl DJ, Beerli P, Holder MT, Lewis PO, Huelsenbeck JP, Ronquist F, Swofford DL, Cummings MP, Rambaut A, Suchard MA (2012) BEAGLE: an application programming interface and high-performance computing library for statistical phylogenetics. Syst Biol 61:170–173

    PubMed  Google Scholar 

  • Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22:3124–3140

    PubMed  PubMed Central  Google Scholar 

  • Chen JQ, Bush JO, Ovitt CE, Lan Y, Jiang R (2007) The TGF-beta pseudoreceptor gene Bambi is dispensable for mouse embryonic development and postnatal survival. Genesis 45:482–486

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Peng W, Kong S, Pu F, Chen B, Zhou Z, Feng J, Li X, Xu P (2018) Genetic mapping of head size related traits in common carp (Cyprinus carpio). Front Genet 9:448

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B, Zhou Z, Ke Q, Wu Y, Bai H, Pu F, Xu P (2019) The sequencing and de novo assembly of the Larimichthys crocea genome using PacBio and Hi-C technologies. Sci Data 6:188

    PubMed  PubMed Central  Google Scholar 

  • Cnaani A, Hallerman EM, Ron M, Weller J, Indelman M, Kashi Y, Gall GAE, Hulata G (2003) Detection of a chromosomal region with two quantitative trait loci, affecting cold tolerance and fish size, in an F2 tilapia hybrid. Aquac Fish 223:117–128

    CAS  Google Scholar 

  • Dong X, Tan P, Cai Z, Xu H, Li J, Ren W, Xu H, Zuo R, Zhou J, Mai K, Ai Q (2017) Regulation of FADS2 transcription by SREBP-1 and PPAR-alpha influences LC-PUFA biosynthesis in fish. Sci Rep 7:40024

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong L, Han Z, Fang M, Xiao S, Wang Z (2019) Genome-wide association study identifies loci for body shape in the large yellow croaker (Larimichthys crocea). Aquac Fish 4:3–8

    Google Scholar 

  • Eickholt BJ, Walsh FS, Doherty P (2002) An inactive pool of GSK-3 at the leading edge of growth cones is implicated in Sernaphorin 3A signaling. J Cell Biol 157:211–217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Dai Z, Shi C, Zhai G, Jin X, He J, Lou Q, Yin Z (2016) Depletion of myostatin b promotes somatic growth and lipid metabolism in zebrafish. Front Endocrinol (Lausanne) 7:88

    Google Scholar 

  • Ho DM, Whitman M (2008) TGF-β signaling is required for multiple processes during Xenopus tail regeneration. Dev Biol 315:203–216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Houston RD, Bean TP, Macqueen DJ, Gundappa MK, Jin YH, Jenkins TL, Selly SLC, Martin SAM, Stevens JR, Santos EM, Davie A, Robledo D (2020) Harnessing genomics to fast-track genetic improvement in aquaculture. Nat Rev Genet 21:389–409

    CAS  PubMed  Google Scholar 

  • Hughes ML, Liu B, Halls ML, Wagstaff KM, Patil R, Velkov T, Jans DA, Bunnett NW, Scanlon MJ, Porter CJ (2015) Fatty acid-binding proteins 1 and 2 differentially modulate the activation of peroxisome proliferator-activated receptor alpha in a ligand-selective manner. J Biol Chem 290:13895–13906

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huynh KD, Fischle W, Verdin E, Bardwell VJ (2000) BCoR, a novel corepressor involved in BCL-6 repression. Genes Dev 14:1810–1823

    CAS  PubMed  PubMed Central  Google Scholar 

  • Imumorin IG, Kim EH, Lee YM, De Koning DJ, Van Arendonk JA, De Donato M, Taylor JF, Kim JJ (2011) Genome scan for parent-of-origin QTL effects on bovine growth and carcass traits. Front Genet 2:44

    PubMed  PubMed Central  Google Scholar 

  • Kakioka R, Kokita T, Kumada H, Watanabe K, Okuda N (2015) Genomic architecture of habitat-related divergence and signature of directional selection in the body shapes of Gnathopogon fishes. Mol Ecol 24:4159–4174

    CAS  PubMed  Google Scholar 

  • Kenney-Hunt JP, Vaughn TT, Pletscher LS, Peripato A, Routman E, Cothran K, Durand D, Norgard E, Perel C, Cheverud JM (2006) Quantitative trait loci for body size components in mice. Mamm Genome 17:526–537

    PubMed  Google Scholar 

  • Kimmel CB, Watson S, Couture RB, Mckibben NS, Nichols JT, Richardson SE, Noakes DL (2015) Patterns of variation and covariation in the shapes of mandibular bones of juvenile salmonids in the genus Oncorhynchus. Evol Dev 17:302–314

    PubMed  PubMed Central  Google Scholar 

  • Kishigami S, Yoshikawa SI, Castranio T, Okazaki K, Furuta Y, Mishina Y (2004) BMP signaling through ACVRI is required for left-right patterning in the early mouse embryo. Dev Biol 276:185–193

    CAS  PubMed  Google Scholar 

  • Komori T (2011) Signaling networks in RUNX2-dependent bone development. J Cell Biochem 112:750–755

    CAS  PubMed  Google Scholar 

  • Kong S, Ke Q, Chen L, Zhou Z, Pu F, Zhao J, Bai H, Peng W, Xu P (2019) Constructing a high-density genetic linkage map for large yellow croaker (Larimichthys crocea) and mapping resistance trait against ciliate parasite Cryptocaryon irritans. Mar Biotechnol 21:262–275

    CAS  Google Scholar 

  • Laporte M, Rogers SM, Dion-Côté A-M, Normandeau E, Gagnaire P-A, Dalziel AC, Chebib J, Bernatchez L (2015) RAD-QTL mapping reveals both genome-level parallelism and different genetic architecture underlying the evolution of body shape in lake whitefish (Coregonus clupeaformis) species pairs. G3 (Bethesda, Md) 5:1481–1491

    Google Scholar 

  • Leinonen T, Cano J, Mäkinen H, Merilä J (2006) Contrasting patterns of body shape and neutral genetic divergence in marine and lake populations of threespine sticklebacks. J Evol Biol 19:1803–1812

    CAS  PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    PubMed  PubMed Central  Google Scholar 

  • Li BJ, Zhu ZX, Gu XH, Lin HR, Xia JH (2019) QTL mapping for red blotches in Malaysia red tilapia (Oreochromis spp.). Mar Biotechnol 21:384–395

    CAS  Google Scholar 

  • Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, Gore MA, Buckler ES, Zhang Z (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics 28:2397–2399

    CAS  PubMed  Google Scholar 

  • Liu X, Sui B, Wang Z, Cai M, Yao C, Chen Q (2011) Estimated reproductive success of brooders and heritability of growth traits for large yellow croaker (Larimichthys crocea) using microsatellites. Chin J Oceanol Limnol 29:990–995

    Google Scholar 

  • Loy A, Busilacchi S, Costa C, Ferlin L, Cataudella S (2000) Comparing geometric morphometrics and outline fitting methods to monitor fish shape variability of Diplodus puntazzo (Teleostea: Sparidae). Aquacult Eng 21:271–283

    Google Scholar 

  • Marcil, Julie (2019) Genetic and environmental components of phenotypic variation in body shape among populations of Atlantic cod (Gadus morhua) [microform]. Biol J 88:351–365

    Google Scholar 

  • Martin GG, Landrock D, Chung S, Dangott LJ, Seeger DR, Murphy EJ, Golovko MY, Kier AB, Schroeder F (2017) Fabp1 gene ablation inhibits high-fat diet-induced increase in brain endocannabinoids. J Neurochem 140:294–306

    CAS  PubMed  Google Scholar 

  • Matsunaga E, Chedotal A (2004) Repulsive guidance molecule/neogenin: a novel ligand-receptor system playing multiple roles in neural development. Develop Growth Differ 46:481–486

    CAS  Google Scholar 

  • Mckenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, Depristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One 7:e37135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Polimanti R, Amstadter AB, Stein MB, Almli LM, Baker DG, Bierut LJ, Bradley B, Farrer LA, Johnson EO, King A, Kranzler HR, Maihofer AX, Rice JP, Roberts AL, Saccone NL, Zhao H, Liberzon I, Ressler KJ, Nievergelt CM, Koenen KC, Gelernter J (2017) A putative causal relationship between genetically determined female body shape and posttraumatic stress disorder. Genome Med 9:99

    PubMed  PubMed Central  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, De Bakker PIW, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rashid N, Nigam A, Saxena P, Jain SK, Wajid S (2017) Association of IL-1beta, IL-1Ra and FABP1 gene polymorphisms with the metabolic features of polycystic ovary syndrome. Inflamm Res 66:621–636

    CAS  PubMed  Google Scholar 

  • Reid DT, Peichel CL (2010) Perspectives on the genetic architecture of divergence in body shape in sticklebacks. Integr Comp Biol 50:1057–1066

    PubMed  PubMed Central  Google Scholar 

  • Rogers SM, Jamniczky HA (2014) The shape of things to come in the study of the origin of species? Mol Ecol 23:1650–1652

    PubMed  Google Scholar 

  • Rogers SM, Tamkee P, Summers B, Balabahadra S, Marks M, Kingsley DM, Schluter D (2012) Genetic signature of adaptive peak shift in threespine stickleback. Evolution 66:2439–2450

    PubMed  PubMed Central  Google Scholar 

  • Sambrook J, Russell DW (2006) Purification of nucleic acids by extraction with phenol:chloroform. CSH Protoc 2006:pdb.prot4455

    PubMed  Google Scholar 

  • Savage-Dunn C (2005) TGF-beta signaling. WormBook : the online review of C elegans biology: 1–12. https://doi.org/10.1895/wormbook.1.22.1

  • Sekiya T, Oda T, Matsuura K, Akiyama T (2004) Transcriptional regulation of the TGF-beta pseudoreceptor BAMBI by TGF-beta signaling. Biochem Biophys Res Commun 320:680–684

    CAS  PubMed  Google Scholar 

  • Sharpe D, Räsänen K, Berner D, Hendry A (2008) Genetic and environmental contributions to the morphology of lake and stream stickleback: implications for gene flow and reproductive isolation. Evol Ecol Res 10:849–866

    Google Scholar 

  • Shi Y, Zhou ZX, Liu B, Kong SN, Chen BH, Bai HQ, Li LB, Pu F, Xu P (2020) Construction of a high-density genetic linkage map and QTL mapping for growth-related traits in Takifugu bimaculatus. Mar Biotechnol 22:130–144

    CAS  Google Scholar 

  • Shore EM, Xu M, Feldman GJ, Fenstermacher DA, Cho TJ, Choi IH, Connor JM, Delai P, Glaser DL, Lemerrer M, Morhart R, Rogers JG, Smith R, Triffitt JT, Urtizberea JA, Zasloff M, Brown MA, Kaplan FS (2006) A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat Genet 38:525–527

    CAS  PubMed  Google Scholar 

  • Spoljaric MA, Reimchen T (2007) 10 000 years later: evolution of body shape in Haida Gwaii three-spined stickleback. J Fish Biol 70:1484–1503

    Google Scholar 

  • Svanback R, Eklov P (2004) Morphology in perch affects habitat specific feeding efficiency. Funct Ecol 18:503–510

    Google Scholar 

  • Terova G, Rimoldi S, Bernardini G, Saroglia M (2013) Inhibition of myostatin gene expression in skeletal muscle of fish by in vivo electrically mediated dsRNA and shRNAi delivery. Mol Biotechnol 54:673–684

    CAS  PubMed  Google Scholar 

  • Trueb B, Taeschler S (2006) Expression of FGFRL1, a novel fibroblast growth factor receptor, during embryonic development. Int J Mol Med 17:617–620

    CAS  PubMed  Google Scholar 

  • Walker JA (2010) An integrative model of evolutionary covariance: a symposium on body shape in fishes. Integr Comp Biol 50:1051–1056

    PubMed  Google Scholar 

  • Wan L, Dong L, Xiao S, Han Z, Wang X, Wang Z (2018) Genomewide association study for economic traits in the large yellow croaker with different numbers of extreme phenotypes. J Genet 97:887–895

    CAS  PubMed  Google Scholar 

  • Wang CM, Lo LC, Zhu ZY, Yue GH (2006) A genome scan for quantitative trait loci affecting growth-related traits in an F1 family of Asian seabass (Lates calcarifer). BMC Genomics 7:274

    PubMed  PubMed Central  Google Scholar 

  • Wang L, Chua E, Sun F, Wan ZY, Ye B, Pang H, Wen Y, Yue GH (2019a) Mapping and validating QTL for fatty acid compositions and growth traits in Asian seabass. Mar Biotechnol 21:643–654

    Google Scholar 

  • Wang L, Xie N, Shen Y, Ye B, Yue GH, Feng X (2019b) Constructing high-density genetic maps and developing sexing markers in northern snakehead (Channa argus). Mar Biotechnol 21:348–358

    CAS  Google Scholar 

  • Welsh D, Zhou M, Mussmann S, Fields L, Thomas C, Pearish S, Kilburn SL, Parker JL, Stein LR, Bartlett JA, Bertram CR, Bland TJ, Laskowski K, Mommer B, Zhuang X, Fuller R (2013) The effects of age, sex, and habitat on body size and shape of the blackstripe topminnow, Fundulus notatus (Cyprinodontiformes: Fundulidae) (Rafinesque 1820). Biol J Linn Soc 108:784–789

    Google Scholar 

  • Wu C, Zhang D, Kan M, Lv Z, Zhu A, Su Y, Zhou D, Zhang J, Zhang Z, Xu M, Jiang L, Guo B, Wang T, Chi C, Mao Y, Zhou J, Yu X, Wang H, Weng X, Jin JG, Ye J, He L, Liu Y (2014) The draft genome of the large yellow croaker reveals well-developed innate immunity. Nat Commun 5:5227

    PubMed  Google Scholar 

  • Yan J, Liao K, Wang T, Mai K, Xu W, Ai Q (2015) Dietary lipid levels influence lipid deposition in the liver of large yellow croaker (Larimichthys crocea) by regulating lipoprotein receptors, fatty acid uptake and triacylglycerol synthesis and catabolism at the transcriptional level. PLoS One 10:e0129937

    PubMed  PubMed Central  Google Scholar 

  • Yang Y, Lan ZJ, Shu H, Zhou HQ, Jiang XL, Hou LP, Gu PH (2018) Association between expression levels and growth trait-related SNPs located in promoters of the MC4R and MSTN genes in Spinibarbus hollandi. Genes Genom 40:1119–1125

    CAS  Google Scholar 

  • Yue GH (2014) Recent advances of genome mapping and marker-assisted selection in aquaculture. Fish Fish 15:376–396

    Google Scholar 

  • Zhang Y, Wang S, Li J, Zhang X, Jiang L, Xu P, Lu C, Wan Y, Sun X (2013) Primary genome scan for complex body shape-related traits in the common carp Cyprinus carpio. J Fish Biol 82:125–140

    CAS  PubMed  Google Scholar 

  • Zhou X, Stephens M (2012) Genome-wide efficient mixed-model analysis for association studies. Nat Genet 44:821–824

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Xie J, Lee D, Liu Y, Jung J, Zhou L, Xiong S, Mei L, Xiong WC (2010) Neogenin regulation of BMP-induced canonical Smad signaling and endochondral bone formation. Dev Cell 19:90–102

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Chen L, Dong C, Peng W, Kong S, Sun J, Pu F, Chen B, Feng J, Xu P (2018) Genome-scale association study of abnormal scale pattern in Yellow River carp identified previously known causative gene in European Mirror carp. Mar Biotechnol 20:573–583

    CAS  Google Scholar 

  • Zhou Z, Han K, Wu Y, Bai H, Ke Q, Pu F, Wang Y, Xu P (2019) Genome-wide association study of growth and body-shape-related traits in large yellow croaker (Larimichthys crocea) using ddRAD sequencing. Mar Biotechnol 21:655–670

    CAS  Google Scholar 

  • Zhu YY, Liang HW, Li Z, Luo XZ, Li L, Zhang ZW, Zou GW (2012) Polymorphism of MSTN gene and its association with growth traits in yellow catfish (Pelteobagruse fulvidraco). Hereditas 34:72–78

    CAS  PubMed  Google Scholar 

Download references

Funding

We acknowledge financial support from State Key Laboratory of Large Yellow Croaker Breeding (Fujian Fuding Seagull Fishing Food Co., Ltd) (LYC2017RS05 & LYC2017ZY01), the Industry-University-Research Collaboration Project in Fujian Province (2019N51010081), the Fundamental Research Funds for the Central Universities, Xiamen University (Nos. 20720180123 & 20720160110), the Science and Technology Platform Construction of Fujian Province (No. 2018N2005), the Local Science and Technology Development Project Guide by The Central Government (2017L3019), and Industry-University-Research Cooperation Project of Xiamen University in Ningde (2018C003).

Author information

Authors and Affiliations

Authors

Contributions

PX conceived the project. PX contributed to the funding acquisition. SK and ZZ wrote the manuscript. TZ and HL revised the manuscript. SK, ZZ, and LC performed the analysis and designed the charts and tables. QK, JZ, and HB conducted the random mating population of large yellow croaker. ZZ and FP conducted the ddRAD libraries. All authors have validated and approved the manuscript.

Corresponding author

Correspondence to Peng Xu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Fig. S1

Schematic diagram of body-shape-related traits of large yellow croaker. (a). Phenotypic measurement of large yellow croaker (b). The modularization of the body shape with simple geometric shape. HD: Head Depth; BD: Body Depth; TL: Tail Length; BL: Body Length; HL: Head Length; Trl: Trunk Length; CPL: Caudal Peduncle Length; CFL: Caudal Fin Length; CPD: Caudal Peduncle Depth. (PDF 397 kb)

Fig. S2

Phenotypic correlation of the body-shape-related traits in large yellow croaker. The scatterplots between different traits are on lower diagonal elements and correlation values are on the upper diagonal elements. *** represents the significant level of 0.01, ** represent the significant level of 0.05. The histogram of each traits was represented in the diagonal line. (PDF 5371 kb)

Fig. S3

The statistics of genotyping. (a) Heatmap of SNPs density on each chromosome (b) the distribution of minimum allele frequency (c) the distribution of quality score of SNPs. (PDF 3243 kb)

Fig. S4

The correlation of P value between UML and MLMM models. (a) BD/BL (b) BT/BL (c) BA/HA (d) CPDLR (e) TL/BL. (PDF 2760 kb)

Fig. S5

The QQ-plot of GWAS. (a) GWAS of BD/BL by UML (b) GWAS of BD/BL by MLMM (c) GWAS of BT/BL by UML (d) GWAS of BT/BL by MLMM (e) GWAS of BA/HA by UML (f) GWAS of BA/HA by MLMM (g) GWAS of CPDLR by UML (h) GWAS of CPDLR by MLMM (i) GWAS of TL/BL by UML (j) GWAS of TL/BL by MLMM. (PDF 2924 kb)

Fig. S6

Genome-wide association study on (a) Body Depth/Body Length (b) Body Thickness/Body Length in large yellow croaker using MLMM model. Genome significance levels are shown by the dotted line. (PDF 3255 kb)

Fig. S7

Genome-wide association study on (a) Body Area/Head Area (b) Caudal Peduncle Depth/Caudal Peduncle Length (c) Tail Length/Body Length in large yellow croaker using UML model. Genome significance levels are shown by the dotted line. (PDF 5026 kb)

Fig. S8

The TGF-β signaling pathway in L. crocea. Gene neo1, bambi, acrv1 and acrv1c were marker by red block. (PDF 178 kb)

Fig. S9

The PPAR signaling pathway in L. crocea. Gene ppara and fabp1 were marker by red block. (PDF 169 kb)

ESM 10

Table S1. Phenotypic data of large yellow croaker. Table S2 Statistics of genotyping of large yellow croaker. Table S3. The significant and suggestive threshold of body-shape-related traits of UML and MLMM. “\” represent that there is no significant or suggestive was identified in GWAS. Table S4. P values for suggestive associated SNPs of body-shape-related traits. The Beta P value was calculated by Beta estimates, which represent the phenotypic variance explained (PVE). (XLSX 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, S., Zhou, Z., Zhou, T. et al. Genome-Wide Association Study of Body Shape-Related Traits in Large Yellow Croaker (Larimichthys crocea). Mar Biotechnol 22, 631–643 (2020). https://doi.org/10.1007/s10126-020-09983-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-020-09983-2

Keywords

Navigation