Skip to main content
Log in

Emergent Behaviors of Thermodynamic Kuramoto Ensemble on a Regular Ring Lattice

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The temporal evolution of Kuramoto oscillators influenced by the temperature field often appears in biological oscillator ensembles. In this paper, we propose a generalized Kuramoto type lattice model on a regular ring lattice with the equal spacing assuming that each oscillator has an internal energy (temperature). Our lattice model is derived from the thermodynamical Cucker–Smale model for flocking on the 2D free space under the assumption that the ratio between velocity field and temperature field at each lattice point has a uniform magnitude over lattice points. The proposed model satisfies an entropy principle and exhibits emergent dynamics under some sufficient frameworks formulated in terms of initial data and system parameters. Moreover, the phase-field tends to the Kuramoto phase-field asymptotically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acebron, J.A., Bonilla, L.L., Pérez Vicente, C.J.P., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005)

    ADS  Google Scholar 

  2. Aeyels, D., Rogge, J.: Stability of phase locking and existence of entrainment in networks of globally coupled oscillators. Prog. Theor. Phys. 112, 921–941 (2004)

    ADS  MATH  Google Scholar 

  3. Benedetto, D., Caglioti, E., Montemagno, U.: On the complete phase synchronization for the Kuramoto model in the mean-field limit. Commun. Math. Sci. 13, 1775–1786 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Buck, J., Buck, E.: Biology of synchronous flashing of fireflies. Nature 211, 562–564 (1966)

    ADS  Google Scholar 

  5. Choi, Y., Ha, S.-Y., Jung, S., Kim, Y.: Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model. Phys. D 241, 735–754 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Chopra, N., Spong, M.W.: On exponential synchronization of Kuramoto oscillators. IEEE Trans. Automatic Control 54, 353–357 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Daido, H.: Quasientrainment and slow relaxation in a population of oscillators with random and frustrated interactions. Phys. Rev. Lett. 68, 1073–1076 (1992)

    ADS  Google Scholar 

  8. Dong, J.-G., Xue, X.: Synchronization analysis of Kuramoto oscillators. Commun. Math. Sci. 11, 465–480 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Dörfler, F., Bullo, F.: On the critical coupling for Kuramoto oscillators. SIAM. J. Appl. Dyn. Syst. 10, 1070–1099 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Dörfler, F., Bullo, F.: Synchronization in complex networks of phase oscillators: a survey. Automatica 50, 1539–1564 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Godunov, S.K.: An interesting class of quasi-linear systems. (Russian). Dokl. Akad. Nauk SSSR 139, 521–523 (1961)

    MathSciNet  Google Scholar 

  12. Ha, S.-Y., Jeong, E., Kang, M.-J.: Emergent behavior of a generalized Viscek-type flocking model. Nonlinearity 23, 3139–3156 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Ha, S.-Y., Jung, J., Kim, J., Park, J., Zhang, X.: Emergent behaviors of the swarmalator model for position-phase aggregation. Math. Models Methods Appl. Sci 29, 2225–2269 (2019)

    MathSciNet  MATH  Google Scholar 

  14. Ha, S.-Y., Kim, Y., Li, Z.: Asymptotic synchronization behavior of Kuramoto type models with frustrations. Netw. Heterog. Media 9, 33–64 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Ha, S.-Y., Kim, Y., Li, Z.: Large-time dynamics of Kuramoto oscillators under the effects of Inertia and frustration. SIAM J. Appl. Dyn. Syst. 13, 466–492 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Ha, S.-Y., Kim, J., Ruggeri, T.: Emergent behaviors of thermodynamic Cucker–Smale particles. SIAM J. Math. Anal. 50, 3092–3121 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Ha, S.-Y., Kim, J., Ruggeri, T.: From the relativistic mixture of gases to the relativistic Cucker–Smale flocking. Arch. Rational Mech. Anal. (2019) (DOI) https://doi.org/10.1007/s00205-019-01452-y

  18. Ha, S.-Y., Kim, H.W., Ryoo, S.W.: Emergence of phase-locked states for the Kuramoto model in a large coupling regime. Commun. Math. Sci. 14, 1073–1091 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Ha, S.-Y., Li, Z., Xue, X.: Formation of phase-locked states in a population of locally interacting Kuramoto oscillators. J. Different. Equ. 255, 3053–3070 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Ha, S.-Y., Ruggeri, T.: Emergent dynamics of a thermodynamically consistent particle model. Arch. Ration. Mech. Anal. 223, 1397–1425 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Israel, W.: Nonstationary irreversible thermodynamics: a causal relativistic theory. Ann. Phys. 100, 310–331 (1976)

    ADS  MathSciNet  Google Scholar 

  22. Jadbabaie, A., Motee, N., Barahona, M.: On the stability of the Kuramoto model of coupled nonlinear oscillators. In: Proceedings of the American Control Conference. pp. 4296–4301 (2004)

  23. Kuramoto, Y.: International symposium on mathematical problems in mathematical physics. Lect. Notes Theor. Phys. 30, 420 (1975)

    ADS  Google Scholar 

  24. Li, Z., Ha, S.-Y.: Uniqueness and well-ordering of emergent phase-locked states for the Kuramoto model with frustration and inertia. Math. Models Methods Appl. Sci. 26, 357–382 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Mirollo, R., Strogatz, S.H.: Stability of incoherence in a population of coupled oscillators. J. Stat. Phys. 63, 613–635 (1991)

    ADS  MathSciNet  Google Scholar 

  26. Mirollo, R., Strogatz, S.H.: The spectrum of the locked state for the Kuramoto model of coupled oscillators. Phys. D 205, 249–266 (2005)

    MathSciNet  MATH  Google Scholar 

  27. Mirollo, R., Strogatz, S.H.: The spectrum of the partially locked state for the Kuramoto model. J. Nonlinear Sci. 17, 309–347 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Müller, I.: The coldness, a universal function in thermoelastic bodies. Arch. Ration. Mech. Anal. 41, 319–332 (1971)

    MathSciNet  MATH  Google Scholar 

  29. Nath, M.A., Ganaie, N.B., Pastogi, R.P., Peerzada, G.M.: Effect of temperature on oscillatory behavior of the system containing isomer of hydroxybenzoic acid in batch reactor. E-J. Chem. 5, 832–837 (2008)

    Google Scholar 

  30. Peskin, C.S.: Mathematical Aspects of Heart Physiology. Courant Institute of Mathematical Sciences, New York (1975)

    MATH  Google Scholar 

  31. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Uzniversal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  32. Ruggeri, T.: Relativistic extended thermodynamics: general assumptions and mathematical procedure. Lecture notes in mathematics 1385. In: A. Anile and Y. Choquet-Bruhat (eds.). Springer, pp. 269–277 (1989)

  33. Ruggeri, T., Simić, S.: Average temperature and Maxwellian iteration in multitemperature mixtures of fluids. Phys. Rev. E 80, 026317 (2009)

    ADS  Google Scholar 

  34. Ruggeri, T., Strumia, A.: Main field and convex covariant density for quasi-linear hyperbolic systems: relativistic fluid dynamics. Ann. Inst. H. Poincaré, Sect. A 34, 65–84 (1981)

    MathSciNet  MATH  Google Scholar 

  35. Ruggeri, T., Sugiyama, M.: Rational Extended Thermodynamics Beyond the Monatomic Gas. Springer, Cham (2015)

    MATH  Google Scholar 

  36. Ruoff, P., Loros, J.J., Dunlap, J.C.: The relationship between FRQ-protein stability and temperature compensation in the Neurospora circadian clock. Proc Natl Acad Sci. 102, 17681–17687 (2005)

    ADS  Google Scholar 

  37. Sakaguchi, H., Kuramoto, Y.: A soluble active rotator model showing phase transitions via mutual entrainment. Progr. Theor. Phys. 76, 576–581 (1986)

    ADS  MathSciNet  Google Scholar 

  38. Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Phys. D 143, 1–20 (2000)

    MathSciNet  MATH  Google Scholar 

  39. van Hemmen, J.L., Wreszinski, W.F.: Lyapunov function for the Kuramoto model of nonlinearly coupled oscillators. J. Stat. Phys 72, 145–166 (1993)

    ADS  MATH  Google Scholar 

  40. Verwoerd, M., Mason, O.: Global phase-locking in finite populations of phase-coupled oscillators. SIAM J. Appl. Dyn. Syst. 7, 134–160 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Verwoerd, M., Mason, O.: On computing the critical coupling coefficient for the Kuramoto model on a complete bipartite graph. SIAM J. Appl. Dyn. Syst. 8, 417–453 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Watanabe, S., Strogatz, S.H.: Constants of motion for superconducting Josephson arrays. Phys. D 74, 197–253 (1994)

    MATH  Google Scholar 

  43. Winfree, A.T.: Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. 16, 15–42 (1967)

    Google Scholar 

  44. Winfree, A.T.: The Geometry of Biological Time. Springer, New York (1980)

    MATH  Google Scholar 

  45. Zülke, A.A., Varela, H.: The effect of temperature on the coupled slow and fast dynamics of an electrochemical oscillator. Rep. Sci (2016). https://doi.org/10.1038/srep24553

Download references

Acknowledgements

The work of S.-Y. Ha was supported by National Research Foundation of Korea (NRF-2020R1A2C3A01003881), and the work of T. Ruggeri was supported National Group of Mathematical Physics GNFM-INdAM

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woojoo Shim.

Additional information

Communicated by Michael Kiessling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, SY., Park, H., Ruggeri, T. et al. Emergent Behaviors of Thermodynamic Kuramoto Ensemble on a Regular Ring Lattice. J Stat Phys 181, 917–943 (2020). https://doi.org/10.1007/s10955-020-02611-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-020-02611-2

Keywords

Mathematics Subject Classification

Navigation