Skip to main content
Log in

Filter paper-based optical sensor for the highly sensitive assessment of thorium in rock samples

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Filter paper-based optical sensors (FPOS) offer rapid and sensitive quantification of analytes. Herein we report, a simple, sensitive, selective and low-cost FPOS for Th(IV) determination. Filter paper strips, impregnated with Morin reagent are reacted with Th(IV) yielding an intense yellow complex whose RGB (red/green/blue) color intensities made the basis of the assessment. A plot of the blue channel color absorbance versus Th(IV) concentration was linear up to 4.0 µg mL− 1 with a detection limit of 0.1 µg mL− 1. The proposed method was accurate, precise and reliable for analyzing complex certified rock samples in excellent compliance with the certified values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Safavi A, Sadeghi M (2006) Design and evaluation of a thorium(IV) selective optode. Anal Chim Acta 567(2):184–188. https://doi.org/10.1016/j.aca.2006.03.027

    Article  CAS  Google Scholar 

  2. Kilic S (2019) Survey of trace elements in bottled natural mineral waters using ICP-MS. Environ Monit Assess 191(7):452. https://doi.org/10.1007/s10661-019-7578-x

    Article  CAS  PubMed  Google Scholar 

  3. Selambakkannu S, Othman NAF, Ting TM, Mohamed NH, Hashim A, Karim ZA (2020) Preparation and optimization of thorium selective ion imprinted nonwoven fabric grafted with poly(2-dimethylaminoethyl methacrylate) by electron beam irradiation technique. J Environ Chem Eng 8(3):103737. https://doi.org/10.1016/j.jece.2020.103737

    Article  CAS  Google Scholar 

  4. Kuznetsova OV, Burmii ZP, Orlova TV, Sevastyanov VS, Timerbaev AR (2019) Quantification of the diagenesis-designating metals in sediments by ICP-MS: comparison of different sample preparation methods. Talanta 200:468–471. https://doi.org/10.1016/j.talanta.2019.03.001

    Article  CAS  PubMed  Google Scholar 

  5. Ito S, Takaku Y, Ikeda M, Kishimoto Y (2017) Determination of trace levels of uranium and thorium in high purity gadolinium sulfate using the ICP-MS with solid-phase chromatographic extraction resin. Prog Theor Exp Phys 2017(11):113

    Article  Google Scholar 

  6. Naskar N, Lahiri S, Mitra S, Chaudhuri P (2020) Radiogenic quality assessment of ground and riverine water samples collected from Indian Sundarbans. Environ Res 185:109407. https://doi.org/10.1016/j.envres.2020.109407

    Article  CAS  PubMed  Google Scholar 

  7. Yousefi SR, Zolfonoun E (2016) On-line solid phase extraction using ion-pair microparticles combined with ICP-OES for the simultaneous preconcentration and determination of uranium and thorium. Radiochim Acta 104(11):801–807. https://doi.org/10.1515/ract-2016-2609

    Article  CAS  Google Scholar 

  8. Souza SO, Dayara VL, Monteiro ASC, Garcia CAB, Alves JPH, Maranhao TA, Araujo RGO (2016) Simultaneous determination of thorium and uranium in mineral fertilizers by inductively coupled plasma optical emission spectrometry. J Braz Chem Soc 27(4):799–806. https://doi.org/10.5935/0103-5053.20150324

    Article  CAS  Google Scholar 

  9. Zinicovscaia I, Ciocarlan A, Lupascu L, Aricu A, Dragalin I, Ciocarlan N, Yushin N (2019) Chemical analysis of Tanacetum corymbosum (L.) Sch. Bip. using neutron activation analysis. J Radioanal Nucl Chem 321(1):349–354. https://doi.org/10.1007/s10967-019-06590-x

    Article  CAS  Google Scholar 

  10. Ozden B, Brennan C, Landsberger S (2019) Environmental assessment of red mud by determining natural radionuclides using neutron activation analysis. Environ Earth Sci 78(4):1–9. https://doi.org/10.1007/s12665-019-8120-8

    Article  CAS  Google Scholar 

  11. Elias MS, Ibrahim S, Samuding K, Rahman SA, Hashim A (2018) The sources and ecological risk assessment of elemental pollution in sediment of Linggi estuary, Malaysia. Mar Pollut Bull 137:646–655. https://doi.org/10.1016/j.marpolbul.2018.11.006

    Article  CAS  PubMed  Google Scholar 

  12. Kumar RS, Kumar SKA, Vijayakrishna K, Sivaramakrishna A, Rao CVSB, Sivaraman N, Sahoo SK (2019) Development of highly selective potentiometric thorium(IV) ion-selective electrode: exploration supported with optical and DFT analysis. Anal Methods 11(10):1338–1345. https://doi.org/10.1039/c8ay02740d

    Article  CAS  Google Scholar 

  13. Mizani F, Shamsipur M, Yaftian MR, Matt D (2013) Flow-injection potentiometry by poly(vinyl chloride)-membrane electrodes with diphosphoryl-dicarboxylicacid-p-tert-butylcalix[4]arene ionophore for the determination of Th(IV) ions. Anal Sci 29(3):361–366. https://doi.org/10.2116/analsci.29.361

    Article  CAS  PubMed  Google Scholar 

  14. Joshi AR, Sebastian N, Kate KG, Ghadse DR (2011) Coated wire thorium ion selective electrode: part II. J Radioanal Nucl Chem 288(2):595–597. https://doi.org/10.1007/s10967-010-0974-x

    Article  CAS  Google Scholar 

  15. Heydari F, Ramezani M (2019) Micro-funnel magnetic stirring-assisted liquid–liquid microextraction technique combined with UV–Vis spectrophotometry for determination of thorium in aqueous samples with the aid of experimental design. J Radioanal Nucl Chem 320(1):27–36. https://doi.org/10.1007/s10967-019-06452-6

    Article  CAS  Google Scholar 

  16. Garg A (2020) Trace determination of thorium with 6-chloro-3-hydroxy-2- (2′-furyl)-4 h-chromen-4-one as an analytical reagent. Asian J Chem 32(2):228–232. https://doi.org/10.14233/ajchem.2020.22222

    Article  CAS  Google Scholar 

  17. Mohamed BT, Guirguis LA, Orabi AH, Khalil LH (2019) Extraction of thorium(IV) with N-Methyl-N,N,N-trioctylammonium chloride from monazite acidic leach liquor and its use for spectrophotometric determination. Radiochemistry 61(5):569–578. https://doi.org/10.1134/s1066362219050084

    Article  CAS  Google Scholar 

  18. Teixeira LFL, Mazzilli BP (2019) Determination of uranium and thorium in sediments from Canane´ia-Iguape system, Brazil. J Radioanal Nucl Chem 320(3):551–560. https://doi.org/10.1007/s10967-019-06528-3

    Article  CAS  Google Scholar 

  19. Gouda AA, Elmasry MS, Hashem H, El-Sayed HM (2018) Eco-friendly environmental trace analysis of thorium using a new supramolecular solvent-based liquid-liquid microextraction combined with spectrophotometry. Microchem J 142:102–107. https://doi.org/10.1016/j.microc.2018.06.024

    Article  CAS  Google Scholar 

  20. Moghaddam ZS, Kaykhaii M, Khajeh M, Oveisi AR (2018) Synthesis of UiO-66-OH zirconium metal-organic framework and its application for selective extraction and trace determination of thorium in water samples by spectrophotometry. Spectrochim Acta Part A 194:76–82. https://doi.org/10.1016/j.saa.2018.01.010

    Article  CAS  Google Scholar 

  21. Al-Kady AS (2012) Optimized and validated spectrophotometric methods for the determination of trace amounts of uranium and thorium using 4-chloro-N-(2,6-dimethylphenyl)-2-hydroxy-5-sulfamoylbenzamide. Sens Actuators B 166–167:485–491. https://doi.org/10.1016/j.snb.2012.02.091

    Article  CAS  Google Scholar 

  22. Upase AB, Zade AB, Kalbende PP (2011) Spectrophotometric microdetermination of thorium(IV) and uranium(VI) with chrome azurol-S in presence of cationic surfactant. J Chem 8(3):1132–1141. https://doi.org/10.1155/2011/258782

    Article  CAS  Google Scholar 

  23. Kadi MW, El-Shahawi MS (2011) Selective determination of thorium in water using dual-wavelength β-correction spectrophotometry and the reagent 4-(2-pyridylazo)-resorcinol. J Radioanal Nucl Chem 289(2):345–351. https://doi.org/10.1007/s10967-011-1139-2

    Article  CAS  Google Scholar 

  24. Guzmán-Mar JL, Hernández-Ramírez A, López-Chuken UJ, López-de-Alba PL, Cerdà V (2011) A multisyringe flow injection method for the determination of thorium in water samples using spectrophotometric detection. J Radioanal Nucl Chem 289(1):67–73. https://doi.org/10.1007/s10967-011-1066-2

    Article  CAS  Google Scholar 

  25. El-Hefny NE, Daoud JA (2004) Extraction and separation of thorium(IV) and praseodymium(III) with CYANEX 301 and CYANEX 302 from nitrate medium. J Radioanal Nucl Chem 261(2):357–363. https://doi.org/10.1023/B:Jrnc.0000034871.59862.76

    Article  CAS  Google Scholar 

  26. Mohamed AA, Mahmoud EHA, Khalil MMH (2019) Development of a selective and sensitive colour reagent for gold and silver ions and its application to desktop scanner analysis. RSC Adv 9(62):36358–36365. https://doi.org/10.1039/c9ra06840f

    Article  CAS  Google Scholar 

  27. Mohamed AA, Shalaby AA, Salem AM (2018) The Yxy colour space parameters as novel signalling tools for digital imaging sensors in the analytical laboratory. RSC Adv 8(19):10673–10679. https://doi.org/10.1039/c8ra00209f

    Article  CAS  Google Scholar 

  28. Mohamed AA, Shalaby AA (2019) Digital imaging devices as sensors for iron determination. Food Chem 274:360–367. https://doi.org/10.1016/j.foodchem.2018.09.014

    Article  CAS  PubMed  Google Scholar 

  29. Morbioli GG, Mazzu-Nascimento T, Stockton AM, Carrilho E (2017) Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (muPADs)—a review. Anal Chim Acta 970:1–22. https://doi.org/10.1016/j.aca.2017.03.037

    Article  CAS  PubMed  Google Scholar 

  30. Apyari VV, Gorbunova MV, Isachenko AI, Dmitrienko SG, Zolotov YA (2017) Use of household color-recording devices in quantitative chemical analysis. J Anal Chem 72(11):1127–1137. https://doi.org/10.1134/S106193481711003x

    Article  CAS  Google Scholar 

  31. Zhang Y, Ge S, Yu J (2016) Chemical and biochemical analysis on lab-on-a-chip devices fabricated using three-dimensional printing, TrAC. Trends Anal Chem 85:166–180. https://doi.org/10.1016/j.trac.2016.09.008

    Article  CAS  Google Scholar 

  32. Yamada K, Henares TG, Suzuki K, Citterio D (2015) Paper-based inkjet-printed microfluidic analytical devices. Angew Chem Int Ed 54(18):5294–5310. https://doi.org/10.1002/anie.201411508

    Article  CAS  PubMed  Google Scholar 

  33. Dutta S (2019) Point of care sensing and biosensing using ambient light sensor of smartphone: Critical review. TrAC Trends Anal Chem 110:393–400. https://doi.org/10.1016/j.trac.2018.11.014

    Article  CAS  Google Scholar 

  34. Shapiro L, Brannock WW (1962) Rapid analysis of silicate, carbonate and phosphate 328 rocks, vol 1144. US Government Printing Office, Washington

  35. Bhilare NG, Shinde VM (1994) Extraction studies of thorium(Iv) with triphenylphosphine oxide. J Radioanal Nucl Chem 185(2):243–250 https://doi.org/10.1007/Bf02041297

    Article  CAS  Google Scholar 

  36. Fletcher MH, Milkey RG (1956) Spectrophotometric study of the thorium-morin mixed-color system. Anal Chem 28(9):1402–1407. https://doi.org/10.1021/ac60117a014

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf A. Mohamed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, A.A., Abd El-Hay, I.M., El Wakil, A.F. et al. Filter paper-based optical sensor for the highly sensitive assessment of thorium in rock samples. J Radioanal Nucl Chem 326, 387–391 (2020). https://doi.org/10.1007/s10967-020-07286-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07286-3

Keywords

Navigation