Skip to main content
Log in

Ascorbic Acid Adsorption-Release Performance and Antibacterial Activity of Chitosan-ter(GMA-MA-NTBA) Polymer Microcapsules

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This study reports ascorbic acid adsorption/release performance and antibacterial activity of chitosan composite microcapsules containing terpolymer of glycidyl methacrylate (GMA), maleic anhydride (MA) and N-tert-butylacrylamide (NTBA). The effects of amount of chitosan composite microcapsules, solution pH, ascorbic acid concentration and contact time on the adsorption of ascorbic acid by chitosan-ter (GMA-MA-NTBA) polymer microcapsules were studied. The maximum ascorbic acid adsorption was observed for 0.075 g of microcapsules under following conditions; ascorbic acid concentration: 10 mg L−1, pH 7.35, temperature: 35 °C and contact time: 1 h. Antibacterial activity of chitosan-ter (GMA-MA-NTBA) polymer microcapsules was tested against Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25113, Klebsiella pneumoniae ATCC 700603, Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212 and Salmonella enteritidis ATCC 13076 bacterial strains. In vitro antibacterial studies demonstrated that chitosan microcapsules with 0.25% ter (GMA-MA-NTBA) polymer (by mass) were more effective on inhibiting of bacterial growth. Plain glutaraldehyde-chitosan beads showed no antibacterial activity, indicating that ter(GMA-MA-NTBA) polymer content was responsible for the antibacterial activity of the chitosan-ter(GMA-MA-NTBA) polymer microcapsules.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ahmed S, Ali A, Sheikh J (2018) Int J Biol Macromol 116:849–862

    CAS  PubMed  Google Scholar 

  2. Kalantari K, Afifi AM, Jahangirian H, Webster TJ (2018) Carbohyd Polym 207:588

    Google Scholar 

  3. Sinha VR, Singla AK, Wadhawan S, Kaushik R, Kumria R, Bansal K, Dhawan S (2004) Int J Pharm 274:1–33

    CAS  PubMed  Google Scholar 

  4. El Knidri H, Belaabed R, Addaou A, Laajeb A, Lahsini A (2018) Int J Biol Macromol 120:1181

    PubMed  Google Scholar 

  5. Ali A, Ahmed S (2018) Int J Biol Macromol 109:273–286

    CAS  PubMed  Google Scholar 

  6. Xu J, Strandman S, Zhu JX, Barralet J, Cerruti M (2015) Biomaterials 37:395–404

    CAS  PubMed  Google Scholar 

  7. Khdair A, Hamad I, Alkhatib H, Bustanji Y, Mohammad M, Tayem R, Aiedeh K (2016) Eur J Pharm Sci 93:38–44

    CAS  PubMed  Google Scholar 

  8. Mahmoodzadeh F, Jannat B, Ghorbani M (2019) Int J Biol Macromol 126:517–524

    CAS  PubMed  Google Scholar 

  9. Meng Q, Man Z, Dai L, Huang H, Zhang X, Hu X, Shao Z, Zhu J, Zhang J, Fu X (2015) Sci Rep 5:17802

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Facchi DP, Cazetta AL, Canesin EA, Almeida VC, Bonafé EG, Kipper MJ, Martins AF (2018) Chem Eng J 337:595–608

    CAS  Google Scholar 

  11. Elgadir MA, Uddin MS, Ferdosh S, Adam A, Chowdhury AJK, Sarker MZI (2015) J Food Drug Anal 23:619–629

    CAS  PubMed  Google Scholar 

  12. Patil SB, Inamdar SZ, Reddy KR, Raghu AV, Soni SK, Kulkarni RV (2019) J Microbiol Methods 159:200–210

    CAS  PubMed  Google Scholar 

  13. Sadeghi-Kiakhani M, Safapour S, Ghanbari-Adivi F (2019) Int J Biol Macromol 134:1170–1178

    CAS  PubMed  Google Scholar 

  14. Pathania D, Gupta D, Kothiyal N, Eldesoky G, Naushad M (2016) Int J Biol Macromol 84:340–348

    CAS  PubMed  Google Scholar 

  15. Pathania D, Gupta D, Agarwal S, Asif M, Gupta VK (2016) Mater Sci Eng, C 64:428–435

    CAS  Google Scholar 

  16. Shimoni E (2004) J Food Sci 69:R160–R166

    CAS  Google Scholar 

  17. Zielinski H, Kozlowska H, Lewczuk B (2001) Innov Food Sci Emerg Technol 2:159–169

    CAS  Google Scholar 

  18. Champagne CP, Fustier P (2007) Curr Opin Biotechnol 18:184–190

    CAS  PubMed  Google Scholar 

  19. Cho Y, Shim H, Park J (2003) J Food Sci 68:2717–2723

    CAS  Google Scholar 

  20. Jang K-I, Lee HG (2008) J Agric Food Chem 56:1936–1941

    CAS  PubMed  Google Scholar 

  21. Desai K, Park HJ (2006) J Microencapsul 23:91–103

    CAS  PubMed  Google Scholar 

  22. Alishahi A, Mirvaghefi A, Tehrani M, Farahmand H, Shojaosadati S, Dorkoosh F, Elsabee MZ (2011) Food Chem 126:935–940

    CAS  Google Scholar 

  23. Yue P, Tricard S, He S, Wang N, Zhao J, Fang J, Shen W (2016) Electroanalysis 28:1340–1347

    CAS  Google Scholar 

  24. Özdemir KS, Gökmen V (2017) LWT Food Sci Technol 76:172–180

    Google Scholar 

  25. Najafi-Taher R, Derakhshan MA, Faridi-Majidi R, Amani A (2015) RSC Adv 5:50462–50469

    CAS  Google Scholar 

  26. Li J, Wu Y, Zhao L (2016) Carbohyd Polym 148:200–205

    CAS  Google Scholar 

  27. Verlee A, Mincke S, Stevens CV (2017) Carbohyd Polym 164:268–283

    CAS  Google Scholar 

  28. Delezuk JA, Ramírez-Herrera DE, de Ávila BE-F, Wang J (2017) Nanoscale 9:2195–2200

    CAS  PubMed  Google Scholar 

  29. Kong M, Chen XG, Xing K, Park HJ (2010) Int J Food Microbiol 144:51–63

    CAS  PubMed  Google Scholar 

  30. Ma Z, Garrido-Maestu A, Jeong KC (2017) Carbohyd Polym 176:257–265

    CAS  Google Scholar 

  31. Berger J, Reist M, Mayer JM, Felt O, Peppas N, Gurny R (2004) Eur J Pharm Biopharm 57:19–34

    CAS  PubMed  Google Scholar 

  32. Mageswari S, Subramanian K (2012) Polymer 51:1296–1302

    CAS  Google Scholar 

  33. Jeong J-H, Byoun Y-S, Lee Y-S (2002) React Funct Polym 50:257–263

    CAS  Google Scholar 

  34. Badrossamay MR, Sun G (2009) Polym Eng Sci 49:359–368

    CAS  Google Scholar 

  35. Sargin İ (2019) Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi 7:524–535

    Google Scholar 

  36. Kleinstreuer C, Zhang Z, Li Z (2008) Respir Physiol Neurobiol 163:128–138

    PubMed  Google Scholar 

  37. Beck-Broichsitter M, Gauss J, Packhaeuser CB, Lahnstein K, Schmehl T, Seeger W, Kissel T, Gessler T (2009) Int J Pharm 367:169–178

    CAS  PubMed  Google Scholar 

  38. Park S, Wexler A (2008) J Aerosol Sci 39:266–276

    CAS  Google Scholar 

  39. Yang W, Peters JI, Williams RO III (2008) Int J Pharm 356:239–247

    CAS  PubMed  Google Scholar 

  40. Esposito E, Cervellati F, Menegatti E, Nastruzzi C, Cortesi R (2002) Int J Pharm 242:329–334

    CAS  PubMed  Google Scholar 

  41. Dev A, Binulal N, Anitha A, Nair S, Furuike T, Tamura H, Jayakumar R (2010) Carbohyd Polym 80:833–838

    CAS  Google Scholar 

  42. Stevanović M, Savić J, Jordović B, Uskoković D (2007) Colloids Surf B 59:215–223

    Google Scholar 

  43. ISO, International Organization for Standardization (2006)

  44. Rzaev ZM (1999) J Polym Sci A 37:1095–1102

    CAS  Google Scholar 

  45. Pehlivan E, Arslan G (2007) Fuel Process Technol 88:99–106

    CAS  Google Scholar 

  46. Rzayev ZM (2011) arXiv:1105.1260

  47. Benhabiles M, Salah R, Lounici H, Drouiche N, Goosen M, Mameri N (2012) Food Hydrocolloids 29:48–56

    CAS  Google Scholar 

  48. Goy RC, Britto DD, Assis OB (2009) Polímeros 19:241–247

    CAS  Google Scholar 

  49. Bruice PY (2011) Organic Chemistry, International edn. Pearson-Prentice Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Selcuk University Research Foundation (Project Number: BAP-17401077) for funding the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Idris Sargin.

Ethics declarations

Conflict of interest

The authors declare no conflict of financial interests with respect to the study described in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciftci, N., Sargin, I., Arslan, G. et al. Ascorbic Acid Adsorption-Release Performance and Antibacterial Activity of Chitosan-ter(GMA-MA-NTBA) Polymer Microcapsules. J Polym Environ 28, 2277–2288 (2020). https://doi.org/10.1007/s10924-020-01773-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01773-0

Keywords

Navigation