Skip to main content
Log in

Bio-inspired Catechol-based Hypercrosslinked Polymer for Iron (Fe) Removal from Water

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Catechol, a structure widely found in nature with a strong interaction with iron (Fe) ions, was used as a monomer to prepare a hypercrosslinked polymer (HCP) as a solid adsorbent for Fe removal from water. The catechol-based HCP (Catechol-HCP) was synthesized via Friedel–Crafts alkylation and characterized by FT-IR spectroscopy, elemental analysis, and BET surface area analysis. The HCPs based on toluene, phenol, and hydroquinone monomers were also prepared to compare their Fe adsorption efficiency. Comparing to toluene-, phenol-, and hydroquinone-based HCPs, Catechol-HCP showed a significantly higher Fe adsorption indicating the important of the strong interaction of catechol unit to the Fe ion. Factors including adsorbent dose, contact time, initial solution concentration, and temperature were studied on their effects on the adsorption efficiency. The Catechol-HCP could remove Fe from water more than 40 mg g−1 or 94%. The adsorption isotherm was fitted to the Langmuir model with the RL value between 0 and 1 indicating the favorable adsorption. The kinetics study suggested the adsorption occurred as a pseudo-second-order mechanism. Moreover, the material showed a good reusability demonstrating the cost effectiveness of the material which would be beneficial for further practical utilizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Berry FJ (1993) In: Silver J (ed) Chemistry of Iron. Springer, Netherlands, Dordrecht, pp 30–45

    Chapter  Google Scholar 

  2. Vlascici D, Fagadar-Cosma E, Popa I, Chiriac V, Gil-Agusti M (2012) Sensors 12:8193–8203

    Article  CAS  Google Scholar 

  3. Kobayashi T, Nishizawa NK (2014) Plant Sci 224:36–43

    Article  CAS  Google Scholar 

  4. Sunda WG, Huntsman SA (2015) Front Microbiol 6:561

    Article  Google Scholar 

  5. Trick CG, Bill BD, Cochlan WP, Wells ML, Trainer VL, Pickell LD (2010) PNAS 107:5887–5892

    Article  CAS  Google Scholar 

  6. Mbedzi N, Ibana D, Dyer L, Browner R (2017) AIP Conf Proc 1805:030002

    Article  Google Scholar 

  7. Fathy N, El Sherif I, Hanna A (2013) JASR 9:233

    Google Scholar 

  8. Zou X, Pan J, Ou H, Wang X, Guan W, Li C, Yan Y, Duan Y (2011) Chem Eng J 167:112–121

    Article  CAS  Google Scholar 

  9. Shavandi MA, Haddadian Z, Ismail MHS, Abdullah N, Abidin ZZ (2012) J Taiwan Inst Chem Eng 43:750–759

    Article  CAS  Google Scholar 

  10. Da̧browski A, Hubicki Z, Podkościelny P, Robens E (2004) Chemosphere 56:91–106

  11. Víctor-Ortega MD, Ochando-Pulido JM, Martínez-Ferez A (2016) J Ind Eng Chem 36:298–305

    Article  Google Scholar 

  12. Ghosh D, Solanki H, Purkait MK (2008) J Hazard Mater 155:135–143

    Article  CAS  Google Scholar 

  13. Vasudevan S, Lakshmi J, Sozhan G (2009) CLEAN – Soil. Air, Water 37:45–51

    Article  CAS  Google Scholar 

  14. Choo K-H, Lee H, Choi S-J (2005) J Membr Sci 267:18–26

    Article  CAS  Google Scholar 

  15. Lin J-L, Huang C, Pan JR, Wang Y-S (2013) Colloids Surf, A 419:87–93

    Article  CAS  Google Scholar 

  16. Ben Sik Ali M, Jellouli Ennigrou D, Hamrouni B (2013) Environ Technol 34:2521–2529

  17. Dalla Costa RF, Klein CW, Bernardes AM, Zoppas Ferreira J (2002) J Braz Chem Soc 13:540–547

    Article  CAS  Google Scholar 

  18. Hegazi HA (2013) HBRC Journal 9:276–282

    Article  Google Scholar 

  19. Bhatnagar A, Hogland W, Marques M, Sillanpää M (2013) Chem Eng J 219:499–511

    Article  CAS  Google Scholar 

  20. Ngah WSW, Ab Ghani S, Kamari A (2005) Bioresour Technol 96:443–450

    Article  Google Scholar 

  21. Agarwal A, Gupta PK (2014) Adv Appl Sci Res 5:75–79

    CAS  Google Scholar 

  22. Dawson R, Cooper AI, Adams DJ (2012) Prog Polym Sci 37:530–563

    Article  CAS  Google Scholar 

  23. Yao S, Yang X, Yu M, Zhang Y, Jiang J-X (2014) J Mater Chem A 2:8054–8059

    Article  CAS  Google Scholar 

  24. Germain J, Hradil J, Fréchet JMJ, Svec F (2006) Chem Mater 18:4430–4435

    Article  CAS  Google Scholar 

  25. Björnerbäck F, Hedin N (2019) Chemsuschem 12:839–847

    Article  Google Scholar 

  26. Dawson R, Ratvijitvech T, Corker M, Laybourn A, Khimyak YZ, Cooper AI, Adams DJ (2012) Polym Chem 3:2034–2038

    Article  CAS  Google Scholar 

  27. Li B, Gong R, Wang W, Huang X, Zhang W, Li H, Hu C, Tan B (2011) Macromolecules 44:2410–2414

    Article  CAS  Google Scholar 

  28. James AM, Harding S, Robshaw T, Bramall N, Ogden MD, Dawson R (2019) ACS Appl Mater Interfaces 11:22464–22473

    Article  CAS  Google Scholar 

  29. Zhang C, Zhu P-C, Tan L, Liu J-M, Tan B, Yang X-L, Xu H-B (2015) Macromolecules 48:8509–8514

    Article  CAS  Google Scholar 

  30. Tan L, Tan B (2017) Chem Soc Rev 46:3322–3356

    Article  CAS  Google Scholar 

  31. Khan A, Singh P, Srivastava A (2018) Microbiol Res 212–213:103–111

    Article  Google Scholar 

  32. Xu Z (2013) Sci Rep 3:2914

    Article  Google Scholar 

  33. Li Y, Wen J, Qin M, Cao Y, Ma H, Wang W (2017) ACS Biomater Sci Eng 3:979–989

    Article  CAS  Google Scholar 

  34. Saiz-Poseu J, Mancebo-Aracil J, Nador F, Busqué F, Ruiz-Molina D (2019) Angew Chem Int Ed 58:696–714

    Article  CAS  Google Scholar 

  35. Moghadam MR, Nasirizadeh N, Dashti Z, Babanezhad E (2013) Int J Ind Chem 4:19

    Article  Google Scholar 

  36. Li B, Su F, Luo H-K, Liang L, Tan B (2011) Microporous Mesoporous Mater 138:207–214

    Article  CAS  Google Scholar 

  37. Yuan S, Dorney B, White D, Kirklin S, Zapol P, Yu L, Liu D-J (2010) Chem Commun 46:4547–4549

    Article  CAS  Google Scholar 

  38. Maneechakr P, Karnjanakom S (2017) J Chem Thermodyn 106:104–112

    Article  CAS  Google Scholar 

  39. Radnia H, Ghoreyshi AA, Younesi H, Najafpour GD (2012) Desalin Water Treat 50:348–359

    Article  CAS  Google Scholar 

  40. Shaban M, Hassouna MEM, Nasief FM, AbuKhadra MR (2017) Environ Sci Pollut R 24:22954–22966

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author gratefully thanks the financial supports for this work. This research project is supported by Mahidol University and Faculty of Science, Mahidol University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanchanok Ratvijitvech.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratvijitvech, T. Bio-inspired Catechol-based Hypercrosslinked Polymer for Iron (Fe) Removal from Water. J Polym Environ 28, 2211–2218 (2020). https://doi.org/10.1007/s10924-020-01766-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01766-z

Keywords

Navigation