Skip to main content
Log in

Superior Adsorption Property of a Novel Green Biosorbent Yttrium/Alginate Gel Beads for Dyes from Aqueous Solution

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

A novel biosorbent yttrium/sodium alginate (Y/SA) hydrogel was prepared by the crosslinking of sodium alginate (SA) and yttrium (Y) ions and characterized by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS), X-ray Diffraction (XRD), Fourier Transform-Infrared (FTIR), UV visible diffuse reflectance spectroscopy (UV–Vis DRS) and Thermogravimetric Analysis (TGA), respectively. The important parameters affecting the adsorption of Congo Red (CR) and Weak Acid Brilliant Blue RAW (WABB RAW) onto Y/SA were investigated systematically, respectively. The results show that Y/SA gel beads have super-strong adsorption performance for CR and WABB RAW dyes in a wide pH range of 2.0–10.0. The equilibrium data fitted by Langmuir and Freundlich models were found to completely follow Langmuir model where the obtained maximum adsorption capacities of 1567 and 1087 mg/g for CR and WABB RAW were very close to the experimental adsorption capacities, respectively, showing the adsorption of monomolecular layer. The adsorption kinetic data of two dyes by Y/SA fully accorded with the pseudo-second-order rate equation and adsorption processes were mainly controlled by intraparticle diffusion. The results of thermodynamic study indicate the feasible, spontaneous and exothermic nature of adsorption reaction. The further study revealed that electrostatic adsorption, hydrogen bonding and ion exchange reaction were the predominant adsorption for dye removal from aqueous solution by Y/SA gel beads. As a highly efficient, green and conducive to solid–liquid separation biosorbent, Y/SA hydrogel has great potential-application prospects for the purification of high-concentration dyestuff effluent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tharaneedhar V, Senthil Kumar P, Saravanan A, Ravikumar C, Jaikumar V (2017) Sustain Mater Technol 11:1

    CAS  Google Scholar 

  2. Anitha T, Senthil Kumar P, Sathish Kumar K (2016) J Water Process Eng 13:127

    Article  Google Scholar 

  3. Waheed A, Mansha M, Kazi IW, Ullah N (2019) J Hazard Mater 369:528

    Article  CAS  Google Scholar 

  4. Senthil Kumar P, Ramalingam S (2013) Int J Ind Chem 4:17

    Article  Google Scholar 

  5. Sienkiewicz A, Kierys A, Goworek J (2019) J Disper Sci Technol 40:1396

    Article  CAS  Google Scholar 

  6. Grace Pavithra K, Senthil Kumar P, Jaikumar V, Sundar Rajan P (2019) J Ind Eng Chem 75:1

    Article  Google Scholar 

  7. Rashidi NA, Yusup S (2017) Chem Eng J 314:277

    Article  CAS  Google Scholar 

  8. Hadi P, Xua M, Ning C, Lin CSK, McKay G (2015) Chem Eng J 260:895

    Article  CAS  Google Scholar 

  9. De Gisi S, Lofrano G, Grassi M, Notarnicola M (2016) Sustain Mater Technol 9:10

    Google Scholar 

  10. Liu QM, Li YY, Chen HF, Lu J, Yu GS, Möslang M, Zhou YB (2020) J Hazard Mater 382: https://doi.org/10.1016/j.jhazmat.2019.121040

  11. Zhang L, Sellaoui L, Franco D, Dotto GL, Bajahzar A, Belmabrouk H, Bonilla-Petriciolet A, Oliveira MLS, Li Z (2019) Chem Eng J 372: https://doi.org/10.1016/j.cej.2019.122952

  12. Senthil Kumar P, Sivaranjanee R, Vinothini U, Raghavi M, Rajasekar K, Ramakrishnan K (2013) Desalin Water Treat 51:1

    Article  Google Scholar 

  13. Cho E, Kim J, Park CW, Lee K-W, Lee TS (2018) J Hazard Mater 360:243

    Article  CAS  Google Scholar 

  14. Eskhan A, Banat F (2018) J Polym Environ 26:2901

    Article  CAS  Google Scholar 

  15. Chiew CSC, Poh PE, Pasbakhsh P, Tey BT, Yeoh HK, Chan ES (2014) Appl Clay Sci 101:444

    Article  CAS  Google Scholar 

  16. Agnihotri S, Singhal R (2019) J Polym Environ 27:372

    Article  CAS  Google Scholar 

  17. Benhouria A, Islam MA, Zaghouane-Boudiaf H, Boutahala M, Hameed BH (2015) Chem Eng J 270:621

    Article  CAS  Google Scholar 

  18. Kumar M, Dosanjh HS, Singh H (2018) J Inorg Organomet P 28: 1688

  19. Xu QY, Chen ZB, Wu ZS, Xu F, Yang DX, He Q, Li G, Chen Y (2019) Bioresour Technol 289:1

    Article  Google Scholar 

  20. Zhang SY, Lyu Y, Su XS, Bian YY, Yu BW, Zhang YL (2016) Environ Earth Sci 75:401

    Article  Google Scholar 

  21. He JS, Cui AN, Ni F, Deng SH, Shen F, Yang G (2018) J Colloid Interface Sci 531:37

    Article  CAS  Google Scholar 

  22. Fabryanty R, Valencia C, Soetaredjo FE, Putro JN, Santoso SP, Kurniawan A, Ju YH, Ismadji S (2017) J Environ Chem Eng 5:5677

    Article  CAS  Google Scholar 

  23. Wei L, Hong TQ, Liu HB, Chen TH (2017) J Cryst Growth 113:60

    Article  Google Scholar 

  24. Cestari AR, Vieira EFS, Santos AGP, Mota JA, Almeida VP (2004) J Colloid Interface Sci 280:380

    Article  CAS  Google Scholar 

  25. Lagergren S (1898) K Sven Vetenskapsakad Handl 24:1

    Google Scholar 

  26. Ho YS, McKay G (1999) Process Biochem 34:451

    Article  CAS  Google Scholar 

  27. Weber JW, Morris JC (1963) J Sanit Eng Div 89:31

    Google Scholar 

  28. Jothirani R, Senthil Kumar P, Saravanan A, Narayan Abishek S, Abhishek D (2016) J Ind Eng Chem 39:162

    Article  CAS  Google Scholar 

  29. Dotto GL, Pinto LAA (2011) J Hazard Mater 187:164

    Article  CAS  Google Scholar 

  30. Zheng Y, Zhu B, Chen H, You W, Jiang C, Yu J (2017) J Colloid Interface Sci 504:688

    Article  CAS  Google Scholar 

  31. Zhong L, Tang A, Yan P, Wang J, Wang Q, Wen X, Cui Y (2019) J Colloid Interface Sci 537:450

    Article  CAS  Google Scholar 

  32. Lorenc-Grabowska E, Gryglewicz G (2007) Dyes Pigm 74:34

    Article  CAS  Google Scholar 

  33. Golder A, Samanta A, Ray S (2006) Chem Eng J 122:107

    Article  CAS  Google Scholar 

  34. Vimonses V, Lei S, Jin B, Chow CWK, Saint C (2009) Chem Eng J 148:354

    Article  CAS  Google Scholar 

  35. Namasivayam C, Arasi D (1997) Chemosphere 34:401

    Article  CAS  Google Scholar 

  36. Wang L, Wang A (2007) J Hazard Mater 147:979

    Article  CAS  Google Scholar 

  37. Dawood S, Sen TK (2012) Water Res 46:1933

    Article  CAS  Google Scholar 

  38. Sayǧili H, Güzel F (2015) Chem Eng Res Des 100:27

    Article  Google Scholar 

  39. Dawood S, Sen TK, Chi P (2014) Water Air Soil Pollut 225:1818

    Article  Google Scholar 

  40. Li J, Ng DHL, Song P, Kong C, Song Y, Yang P (2015) Biomass Bioenerg 75:189

    Article  Google Scholar 

  41. Lei C, Zhu X, Zhu B, Jiang C, Le Y, Yu J (2017) J Hazard Mater 321:801

    Article  CAS  Google Scholar 

  42. Tellinghuisen J (2006) Biophys Chem 120:114

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (21167011), the Inner Mongolia Natural Science Foundation (2015MS0226) and the Inner Mongolia Normal University Science Research Foundation (112129K18ZZYF006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beigang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Yin, H. Superior Adsorption Property of a Novel Green Biosorbent Yttrium/Alginate Gel Beads for Dyes from Aqueous Solution. J Polym Environ 28, 2137–2148 (2020). https://doi.org/10.1007/s10924-020-01757-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01757-0

Keywords

Navigation